Two decreasing measures for simply typed $\lambda-$ terms

Pablo Barenbaum

UNQ/CONICET & ICC/UBA

Cristian Sottile

8th International Conference on Formal Structures for Computation and Deduction (FSCD'23)

Rome, Italy

July 3-6, 2023

Instituto de Ciencias de la Computación

Outline

- Some Strong Normalization proofs
- Decreasing measures
- ▶ The auxiliary (non-erasing) λ^m calculus
- ▶ The W measure: based on operations over λ^m
- The \mathcal{T}^m measure: extends a Turing's measure

SN proofs: a brief overview

Reducibility candidates [Tait, Girard]

Most widely known and used

Redex degrees + λI

Turing's measure implies Weak Normalization Translation to λI (non-erasing) + WN allows for Strong Normalization

Great adaptability

Increasing functionals [Gandy, de Vrijer]

1. Map types to sets of strictly increasing functions (\mathcal{IF})

$$\mathcal{IF}_{\tau} = \mathbb{N}$$
 $\qquad \qquad \mathcal{IF}_{A \to B} = \mathcal{IF}_A \Rightarrow \mathcal{IF}_B$

Succint

2. Map terms to \mathcal{IF} $[\cdot]: A \to \mathcal{IF}_A$

- 3. Project \mathcal{IF} to \mathbb{N} $\star : \mathcal{IF}_A \to \mathbb{N}$
- 4. \star constitutes a **decreasing measure** for terms

Decreasing measures

Definition (Decreasing measure)

 $\#: \Lambda \to WFO \qquad \qquad M \to_{\beta} N \implies \#(M) > \#(N)$

A decreasing measure implies SN

Why to define a decreasing measure?

- Provides more information
- Allows for deeper analysis (*e.g.* remaining steps)

An ideal measure

- simple definition
- easy to compute

simple WFOeasy to prove

Our work

- \blacktriangleright Two measures, ${\cal W}$ and ${\cal T}^m$
- Neither are ideal
- \blacktriangleright Contribution to better understanding why simply typed $\lambda-{\rm terms}$ terminate

Turing's measure

Definition

Redex degrees

$$\begin{array}{ll} \mbox{height of a type} & \mbox{degree of a redex} \\ \mbox{e.g. } \mbox{h}((\tau \rightarrow \tau) \rightarrow (\tau \rightarrow \tau)) = 2 & \mbox{e.g. } \delta((\lambda x.x^{\tau \rightarrow \tau})t) = 2 \end{array}$$

Example

Idea: multiset of the redex degrees of M

$$\mathcal{T}(M) = [d \mid R \text{ is a redex of degree } d \text{ in } M]$$
 [2,1,1]

Turing's measure

Weak normalization Redex creation [Lévy, 1978]

 $\begin{array}{lll} \mbox{identity applied to a } \lambda & (\lambda x.x) \left(\lambda y.M\right) N & \rightarrow_{\beta} & (\lambda y.M) N \\ \lambda \mbox{ body is a } \lambda & (\lambda x.\lambda y.M) N O & \rightarrow_{\beta} & (\lambda y.M[N/x]) O \\ \mbox{replaced var in app position} & (\lambda x.\dots x M \dots) \left(\lambda y.N\right) & \rightarrow_{\beta} & \dots \left(\lambda y.N\right) M[\lambda y.N/x] \dots \end{array}$

Two crucial observations [Turing, 1940s]

- a redex cannot create redexes of greater or equal degree
- a redex can copy redexes of any degree

Choosing the redex to contract

- has the greatest degree
 - less occurrences of greater element
- avoid copying redexes of greater degree Example

$$\mathcal{T}(\underbrace{K\left(\underline{I\,x}\right)}_{\mathsf{R2}}\left(\underline{I\,x}\right)) = \begin{bmatrix} 2, 1, 1 \\ \mathsf{R}, \mathsf{S1} \end{bmatrix}$$

avoid copying redex of the same degree

$$\frac{\mathcal{T}(\underbrace{(\lambda y.\underline{I}\,x)}_{\mathsf{S1}}\,(\underline{I}\,x))}{\underbrace{\mathsf{U1}}} = \begin{bmatrix} 1\\\mathsf{S},\mathsf{T},\mathsf{U} \end{bmatrix}$$

Pablo Barenbaum & Cristian Sottile

Two decreasing measures for simply typed λ – terms

The auxiliar λ^m -calculus

Motivation: we can define a decreasing measure from an increasing measure, WCR and WN **Definition**

$$t ::= x \mid \lambda x.t \mid tt \mid t\{t\} \qquad (\lambda x.t)s \to_m t[s/x]\{s\} \qquad t\underbrace{\{s\{r\}\}\{u\}}_L \Longrightarrow t \mathsf{L}$$

weight of a term: amount of memories

 $\mathsf{w}(x\{y\{z\}\}\{w\}) = 3$

Lemma

1. λ^m satisfies subject reduction

2. λ^m is confluent

Simplification

- ▶ $S_D(t)$: simultaneous contraction of D redexes
- $S_*(t)$: iterative $S_i(t) = S_1(\dots S_D(t) \dots)$ (D max δ)

Lemma

3.
$$t \rightarrow_m^* S_*(t)$$
 4. $S_*(t)$ normal form of a

Pablo Barenbaum & Cristian Sottile

Forgetful reduction

 $t\{s\} \triangleright t \qquad e.g. \ It \rightarrow_m t\{t\} \triangleright t$

Lemma

- 5. \triangleright commutes with \rightarrow_m
- 6. $M \rightarrow_{\beta} N$ implies $M \rightarrow_{m} s \triangleright N$

The first measure: counting memories

The $\ensuremath{\mathcal{W}}$ measure

 λ^m is increasing: w(t)

$$(\lambda x.t)\mathsf{L}s \to_m t[s/x]\{s\}\mathsf{L}$$

Idea: normal form of ${\cal M}$ has more memories than the normal form of ${\cal N}$

Definition $\mathcal{W}(M) = \mathsf{w}(\mathsf{S}_*(M))$ $M \xrightarrow{\beta} N$ $S_*(M) \triangleright S_*(N)$ $w(S_*(M)) > w(S_*(N))$ **A remark**: it is not necessary to have a proof of WN to define \mathcal{W} Theorem

$$M \to_{\beta} N \implies \mathcal{W}(M) > \mathcal{W}(N)$$

The second measure: extending Turing's one

Turing's measure

What about contracting any redex?

 $\ensuremath{\textbf{Recall that}}$: a redex can copy redexes of greater or equal degree $\ensuremath{\textbf{For instance}}$

$$\begin{array}{l} \bullet \ \ M \xrightarrow[]{} \beta \ N \\ \bullet \ \ R \ \text{with} \ \delta(R) = 1 \ \text{copies a redex} \ S \ \text{with} \ \delta(S) = 2 \\ \\ \mathcal{T}(M) = [\frac{2}{5}, \frac{1}{8}] \\ \end{array} \qquad \qquad \mathcal{T}(N) = [\frac{2}{5'}, \frac{2}{5''}] \end{array}$$

Our proposal: to adapt the measure so that it decreases by contracting any redex

A first attempt: \mathcal{T}' measure

Problems

- (>) A redex copies redexes of greater degree
- (=) A redex copies redexes of same degree

Idea

 $i)\,$ generalize ${\cal T}$ to a family indexed by degrees, so ${\it e.g.}$

$$\mathcal{T}_2'(M) = [\underset{\mathsf{S}}{2}, \underset{\mathsf{R}}{1} \qquad \quad \text{and} \qquad \quad \mathcal{T}_1'(M) = [\underset{\mathsf{R}}{1}]$$

ii) instead of counting redex degrees in an isolated way, consider also the information about remaining smaller redexes, so *e.g.*

$$\mathcal{T}_2'(M) = \left[\begin{array}{c} (2, \mathcal{T}_1'(M)), \ (\frac{1}{\mathsf{R}}, []) \end{array} \right] \qquad \qquad \mathcal{T}_1'(M) = \left[\begin{array}{c} (1, []) \end{array} \right]$$

Definition

- $\blacktriangleright \ \mathcal{T}'_D(M) = [(i,\mathcal{T}'_{i-1}(M)) \mid R \text{ is a redex of degree } i \leq D \text{ in } M]$
- $\blacktriangleright \ {\cal T}'(M) = {\cal T}'_D(M)$ where D is the maximum degree of M

 $\mathcal{T}(M) = [2,1] \longrightarrow \mathcal{T}(N) = [2,2]$ $\mathcal{T}(M) = [1,1] \longrightarrow \mathcal{T}(N) = [1,1]$

A second attempt: \mathcal{T}^{β} measure

Definition (**Development** of a set of redexes)

Reduction sequence where each step corresponds to a residual of a redex in the set

- A residual is a copy of a redex left after contracting another
- Notation: $\rho: M \xrightarrow{D^*}_{\beta} M'$

Idea

- $i)\,$ generalize ${\cal T}$ to a family indexed by degrees ${\cal T}^{\beta}_D$
- ii) instead of isolatedly counting redexes degrees, consider:
 - from set of redexes of degree D
 - ► target M' from every development $\rho: M \xrightarrow{D}_{\beta}^{*} M'$
 - multiset of those $\mathcal{T}^{\beta}_{D-1}(M')$

Definition

$$\begin{split} \mathcal{T}_D^\beta(M) &= [\ (i,\mathcal{V}_i^\beta(M)) \mid R \text{ is a redex of degree } i \leq D \text{ in } M \] \\ \mathcal{V}_D^\beta(M) &= [\ \mathcal{T}_{D-1}^\beta(M') \mid \rho : M \xrightarrow{D}_\beta^* M' \] \end{split}$$

Problem: our technique to prove it decreases does not work because of erasing

\mathcal{T}^m measure

Idea

- $i)\,$ generalize ${\cal T}$ to a family indexed by degrees ${\cal T}_D^m$
- ii) instead of isolatedly counting redexes degrees,

consider the multiset of the measures \mathcal{T}_{D-1}^m of every target of a development of degree D

Definition

$$\begin{split} \mathcal{T}_D^m(t) &= [\ (i,\mathcal{V}_i^m(t)) \ | \ R \text{ is a redex of degree } i \leq D \text{ in } t \] \\ \mathcal{V}_D^m(t) &= [\ \mathcal{T}_{D-1}^m(t') \ | \ \rho: t \xrightarrow{D}_m^* t' \] \end{split}$$

Lemmas

- **Forget/decrease**: forgetful reduction \triangleright decreases \mathcal{T}^m
- ► **High/increase**: contracting a redex of degree D > i increases (non-strictly) \mathcal{T}_i^m only $\leq i$, no D, in \mathcal{T}_i^m no erasing of any $\leq i$ maybe copies of $\leq i$
- ► Low/decrease: contracting a redex of degree i < D decreases (strictly) \mathcal{T}_D^m injective mappings from devs of $\mathcal{V}_D^m(N)$ to devs of $\mathcal{V}_D^m(M)$

Theorem

$$M \to_{\beta} N \implies \mathcal{T}^m(M) > \mathcal{T}^m(N)$$

Conclusion and future work

Conclusion

- Some Strong Normalization proofs
- Decreasing measures
- Auxiliar non-erasing λ^m calculus
- \blacktriangleright $\mathcal W$ measure: based on weight (or accumulated memory) of terms in λ^m
- $\blacktriangleright~\mathcal{T}^m$ measure: based on anidated multisets of measures of target developments

Future work

- Extend these measures to System F
- ► Formalize them in a proof assistant

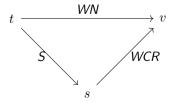
The auxiliar λ^m -calculus

Motivation

$$\beta$$
 is erasing $(\lambda x.y)t \rightarrow_{\beta} y$

A motivation not to erase

- $\blacktriangleright \text{ Klop-Nederpelt lemma } INC \land WCR \land WN \implies SN \land CR$
- ▶ We can obtain a decreasing measure from $INC \land WCR \land WN$
 - \blacktriangleright by WN there is a normal form v for any t
 - by WCR it is the same for every reduct s of t
 - ▶ by INC inc(t) < inc(s) < inc(v)
 - dec(t) = inc(v) inc(t)



Turing's measure "failing" example

Example: copying a redex of greater degree

$$\begin{array}{cccc} I_1 = \lambda x^{\tau}.x & \delta(I_1 \, x) &= \mathsf{h}(\tau \to \tau) &= 1 \\ I_2 = \lambda x^{\tau \to \tau}.x & \delta(I_2 \, I_1) &= \mathsf{h}((\tau \to \tau) \to (\tau \to \tau)) = 2 \\ K = \lambda x^{\tau}.\lambda y^{\tau}.x & \delta(K_{_}) &= \mathsf{h}(\tau \to \tau \to \tau) &= 2 \\ S_{KI} = \lambda x^{\tau}.K \, x \, (I_1 \, x) & \delta(S_{KI_}) = \mathsf{h}(\tau \to \tau) &= 1 \\ \end{array} \\ \mathcal{T}(\underbrace{S_{KI}}_{\overset{s_2}{\to} \overset{I}{\to} \overset{I}{\to$$

A first attempt: \mathcal{T}' measure

A working? example (>)

Definition

▶
$$\mathcal{T}'_D(M) = [(d, \mathcal{T}'_{d-1}(M)) \mid R \text{ is a redex of degree } d \leq D \text{ in } M]$$

▶ $\mathcal{T}'(M) = \mathcal{T}'_D(M)$ where D is the maximum degree of M

Example

$$\begin{split} M & = & \underbrace{S_{\underline{K}} \underset{\underline{S_2 \, \mathsf{T}_1}}{\underline{I}} (\underline{I_2 \, I_1} \, x)}_{\mathbf{R}1} & \longrightarrow_{\beta} & \underbrace{K \, (\underline{I_2 \, I_1} \, x) \, (I_1 \, (\underline{I_2 \, I_1} \, x))}_{\underline{\mathsf{U}'2}} = & N \\ & \underbrace{\frac{\mathsf{U'2}}{\mathsf{S2}}}_{\mathbf{S2}} \underbrace{\frac{\mathsf{U''2}}{\mathsf{T1}}}_{\mathbf{T1}} \end{split}$$

$$\begin{aligned} \mathcal{T}_{2}'(M) &= \left[\begin{array}{c} (2, \mathcal{T}_{1}'(M)), \ (2, \mathcal{T}_{1}'(M)), \ (1, \|), \ (1, \|) \end{array} \right] & \mathcal{T}_{1}'(M) = \left[\begin{array}{c} (1, \|), \ (1, \|) \end{array} \right] \\ \mathcal{T}_{2}'(N) &= \left[\begin{array}{c} (2, \mathcal{T}_{1}'(M)), \ (2, \mathcal{T}_{1}'(M)), \ (2, \mathcal{T}_{1}'(M)), \ (1, \|) \end{array} \right] & \mathcal{T}_{1}'(N) = \left[\begin{array}{c} (1, \|), \ (1, \|) \end{array} \right] \end{aligned}$$

(2, [(1, []), (1, [])]) > (2, [(1, [])])

A first attempt: \mathcal{T}' measure

A failing example (=)

Definition

▶
$$\mathcal{T}'_D(M) = [(d, \mathcal{T}'_{d-1}(M)) \mid R \text{ is a redex of degree } d \leq D \text{ in } M]$$

▶ $\mathcal{T}'(M) = \mathcal{T}'_D(M)$ where D is the maximum degree of M

Example Example

$$M = \underbrace{S_{\underline{K}}}_{\underline{S_2} \underline{T_1}} \underbrace{(I_1 x)}_{\underline{U_1}} \longrightarrow_{\beta} \qquad \underbrace{K(\underline{I_1} x)}_{\underline{U'_1}} \underbrace{((I_1 x))}_{\underline{U''_1}} = N$$

$$\mathcal{T}_{2}'(M) = [\ (\underset{\mathsf{S}}{2}, \mathcal{T}_{1}'(M)), \ (\underset{\mathsf{R}}{1}, []), \ (\underset{\mathsf{T}}{1}, []), \ (\underset{\mathsf{U}}{1}, []), \] \qquad \qquad \mathcal{T}_{1}'(M) = [\ (\underset{\mathsf{R}}{1}, []), \ (\underset{\mathsf{U}}{1}, []), \ (\underset{\mathsf{U}}{1}, []), \]$$

 $\mathcal{T}_{2}'(N) = [\ (\underset{\mathsf{S}}{2}, \mathcal{T}_{1}'(M)), \ (\underset{\mathsf{T}}{1}, []), \ (\underset{\mathsf{U}'}{1}, []), \ (\underset{\mathsf{U}'}{1}, []) \] \qquad \qquad \mathcal{T}_{1}'(N) = [\ (\underset{\mathsf{U}'}{1}, []), \ (\underset{\mathsf{U}'}{1}, []), \ (\underset{\mathsf{U}''}{1}, []) \]$

(2, [(1, []), (1, []), (1, [])]) = (2, [(1, []), (1, []), (1, [])])

A second attempt: \mathcal{T}^{β} measure

Definition

$$\begin{split} \mathcal{T}_D^\beta(M) &= [\ (i,\mathcal{V}_i^\beta(M)) \mid R \text{ is a redex of degree } i \leq D \text{ in } M \\ \mathcal{V}_D^\beta(M) &= [\ \mathcal{T}_{D-1}^\beta(M') \mid \rho : M \xrightarrow{D}_{\beta}^* M' \] \end{split}$$

Reasoning about the auxiliar measure \mathcal{V}^{β}_D

Consider

$$M \underset{R}{\to_{\beta}} N \qquad \mathcal{T}_{D}^{\beta}(M) > \mathcal{T}_{D}^{\beta}(N) \qquad \mathcal{V}_{D}^{\beta}(M) > \mathcal{V}_{D}^{\beta}(N)$$

- 1. Copying a redex of same degree (=)
 - ▶ injective mapping from devs of $\mathcal{V}_D^m(N)$ to devs of $\mathcal{V}_D^m(M)$ $R\rho: M \to_\beta N \to_\beta^* N'$

$$\mathcal{V}_D^\beta(M) > \mathcal{V}_D^\beta(N) \qquad \qquad \mathcal{T}_D^\beta(M) > \mathcal{T}_D^\beta(N)$$

- 2. Copying a redex of higher degree (>)
 - \blacktriangleright not clear the same can be done: a ho may erase R

$$\mathcal{V}_D^\beta(M') = \mathcal{V}_D^\beta(N') \qquad \qquad \mathcal{T}_D^\beta(M') = \mathcal{T}_D^\beta(N')$$

Two decreasing measures for simply typed λ – terms