Two decreasing measures for simply typed λ-terms

Pablo Barenbaum
UNQ/CONICET \& ICC/UBA

Cristian Sottile
ICC/UBA/CONICET \& UNQ

8th International Conference on
Formal Structures for Computation and Deduction (FSCD'23)
Rome, Italy
July 3-6, 2023

EXACTAS

Universidad
Nacional
de Quilmes

Instituto de Ciencias
de la Compułación

Outline

- Some Strong Normalization proofs
- Decreasing measures
- The auxiliary (non-erasing) λ^{m} calculus
- The \mathcal{W} measure: based on operations over λ^{m}
- The \mathcal{T}^{m} measure: extends a Turing's measure

SN proofs: a brief overview

Reducibility candidates [Tait, Girard]

Most widely known and used
Succint
Great adaptability
Redex degrees $+\lambda I$
Turing's measure implies
Weak Normalization

> Translation to λI (non-erasing) +WN allows for
> Strong Normalization

Increasing functionals [Gandy, de Vrijer]

1. Map types to sets of strictly increasing functions ($\mathcal{I F}$)

$$
\mathcal{I F} \mathcal{F}_{\tau}=\mathbb{N} \quad \mathcal{I F} \mathcal{F}_{A \rightarrow B}=\mathcal{I} \mathcal{F}_{A} \Rightarrow \mathcal{I} \mathcal{F}_{B}
$$

2. Map terms to $\mathcal{I F}$

$$
[\cdot]: A \rightarrow \mathcal{I F}{ }_{A}
$$

3. Project $\mathcal{I F}$ to \mathbb{N}

$$
\star: \mathcal{I F}{ }_{A} \rightarrow \mathbb{N}
$$

4. \star constitutes a decreasing measure for terms

Decreasing measures

Definition (Decreasing measure)

$$
\#: \Lambda \rightarrow W F O \quad M \rightarrow_{\beta} N \Longrightarrow \#(M)>\#(N)
$$

A decreasing measure implies SN
Why to define a decreasing measure?

- Provides more information
- Allows for deeper analysis (e.g. remaining steps)

An ideal measure

- simple definition
- easy to compute
- simple WFO
- easy to prove

Our work

- Two measures, \mathcal{W} and \mathcal{T}^{m}
- Neither are ideal
- Contribution to better understanding why simply typed λ-terms terminate

Turing's measure

Definition

Redex degrees

$$
\begin{array}{cc}
\text { height of a type } & \text { degree of a redex } \\
\text { e.g. } \mathrm{h}((\tau \rightarrow \tau) \rightarrow(\tau \rightarrow \tau))=2 & \text { e.g. } \delta\left(\left(\lambda x . x^{\tau \rightarrow \tau}\right) t\right)=2
\end{array}
$$

Example

$$
\begin{array}{lllll}
I=\lambda x^{\tau} \cdot x & \delta(I x) & =\mathrm{h}(\tau \rightarrow \tau) & =1 \\
K=\lambda x^{\tau} \cdot \lambda y^{\tau} \cdot x & \delta(K(I x)) & =\mathrm{h}(\tau \rightarrow \tau \rightarrow \tau) & =2 & \frac{K\left(\frac{I x}{1}\right)\left(\frac{I x}{1}\right)}{2}
\end{array}
$$

Idea: multiset of the redex degrees of M

$$
\mathcal{T}(M)=[d \mid R \text { is a redex of degree } d \text { in } M] \quad[2,1,1]
$$

Turing's measure

Weak normalization

Redex creation [Lévy, 1978]
identity applied to a λ
λ body is a λ replaced var in app position

$$
\begin{array}{rlll}
(\lambda x \cdot x)(\lambda y \cdot M) N & \rightarrow_{\beta} & (\lambda y \cdot M) N \\
(\lambda x \cdot \lambda y \cdot M) N O & \rightarrow_{\beta} & (\lambda y \cdot M[N / x]) O \\
(\lambda x \ldots x M \ldots)(\lambda y \cdot N) & \rightarrow_{\beta} & \ldots(\lambda y \cdot N) M[\lambda y \cdot N / x] \ldots
\end{array}
$$

Two crucial observations [Turing, 1940s]

- a redex cannot create redexes of greater or equal degree
- a redex can copy redexes of any degree

Choosing the redex to contract

- has the greatest degree
- less occurrences of greater element
- avoid copying redexes of greater degree

Example

- rightmost occurrence of that degree
- avoid copying redex of the same degree

$$
\left.\underset{\mathrm{R} 2}{\mathcal{T}\left(K\left(\frac{I x}{\mathrm{~S} 1}\right)\right.}\left(\frac{I x}{\mathrm{~T} 1}\right)\right)=\left[\frac{\mathrm{R}}{2}, \frac{1}{\mathrm{~S}}, \frac{1}{\mathrm{~T}}\right] \quad \frac{\mathcal{T}\left(\left(\lambda y \cdot \frac{I x}{\mathrm{~S} 1}\right)\left(\frac{I x}{\mathrm{~T} 1}\right)\right.}{\mathrm{U} 1}=\left[\frac{1}{\mathrm{~S}}, \frac{1}{\mathrm{~T}}, 1\right]
$$

The auxiliar λ^{m}-calculus

Motivation: we can define a decreasing measure from an increasing measure, WCR and WN Definition

$$
t::=x|\lambda x . t| t t \mid t\{t\} \quad(\lambda x . t) s \rightarrow_{m} t[s / x]\{s\} \quad t \underbrace{\{s\{r\}\}\{u\}}_{L} \Longrightarrow t \mathrm{~L}
$$

weight of a term: amount of memories

Lemma

1. λ^{m} satisfies subject reduction
2. λ^{m} is confluent

Simplification

- $\mathrm{S}_{D}(t)$: simultaneous contraction of D redexes
- $\mathrm{S}_{*}(t)$: iterative $\mathrm{S}_{i}(t) \quad \mathrm{S}_{1}\left(\ldots \mathrm{~S}_{D}(t) \ldots\right) \quad(D \max \delta)$

Lemma

$$
\text { 3. } t \rightarrow{ }_{m}^{*} \mathrm{~S}_{*}(t) \quad \text { 4. } \mathrm{S}_{*}(t) \text { normal form of } t
$$

Forgetful reduction

$$
t\{s\} \triangleright t \quad \text { e.g. } I t \rightarrow_{m} t\{t\} \triangleright t
$$

Lemma

5. \triangleright commutes with \rightarrow_{m}
6. $M \rightarrow_{\beta} N$ implies
$M \rightarrow_{m} s \triangleright N$

The first measure: counting memories

The \mathcal{W} measure

λ^{m} is increasing: $\mathbf{w}(t)$

$$
(\lambda x . t) \mathrm{L} s \rightarrow_{m} t[s / x]\{s\} \mathrm{L}
$$

Idea: normal form of M has more memories than the normal form of N

Definition

$$
\begin{array}{ccc}
\mathcal{W}(M) & =\mathrm{w}\left(\mathrm{~S}_{*}(M)\right) \\
M \quad \stackrel{\beta}{\longrightarrow} N \\
\mathrm{~S}_{*}(M) & \triangleright \mathrm{S}_{*}(N) \\
\mathrm{w}\left(\mathrm{~S}_{*}(M)\right) & >\mathrm{w}\left(\mathrm{~S}_{*}(N)\right)
\end{array}
$$

A remark: it is not necessary to have a proof of $W N$ to define \mathcal{W}

Theorem

$$
M \rightarrow_{\beta} N \quad \Longrightarrow \quad \mathcal{W}(M)>\mathcal{W}(N)
$$

The second measure: extending Turing's one

Turing's measure

What about contracting any redex?

Recall that: a redex can copy redexes of greater or equal degree For instance

- $M \underset{R}{\rightarrow_{R}} N$
- R with $\delta(R)=1$ copies a redex S with $\delta(S)=2$

$$
\mathcal{T}(M)=\left[{ }_{\mathrm{S}}, \frac{1}{\mathrm{R}}\right] \quad \mathcal{T}(N)=[2,2]
$$

Our proposal: to adapt the measure so that it decreases by contracting any redex

A first attempt: \mathcal{T}^{\prime} measure

Problems

$(>)$ A redex copies redexes of greater degree

$$
\begin{aligned}
& \mathcal{T}(M)=[2,1] \longrightarrow \mathcal{T}(N)=[2,2] \\
& \mathcal{T}(M)=[1,1] \longrightarrow \mathcal{T}(N)=[1,1]
\end{aligned}
$$

(=) A redex copies redexes of same degree

Idea

i) generalize \mathcal{T} to a family indexed by degrees, so e.g.

$$
\mathcal{T}_{2}^{\prime}(M)=[2,1] \quad \text { and } \quad \mathcal{T}_{1}^{\prime}(M)=\left[\frac{1}{\mathrm{R}}\right]
$$

ii) instead of counting redex degrees in an isolated way, consider also the information about remaining smaller redexes, so e.g.

$$
\mathcal{T}_{2}^{\prime}(M)=\left[\left(\underset{\mathrm{S}}{2}, \mathcal{T}_{1}^{\prime}(M)\right),(\underset{\mathrm{R}}{1},[])\right] \quad \mathcal{T}_{1}^{\prime}(M)=[(\underset{\mathrm{R}}{(1,[])]}
$$

Definition

- $\mathcal{T}_{D}^{\prime}(M)=\left[\left(i, \mathcal{T}_{i-1}^{\prime}(M)\right) \mid R\right.$ is a redex of degree $i \leq D$ in $\left.M\right]$
- $\mathcal{T}^{\prime}(M)=\mathcal{T}_{D}^{\prime}(M)$ where D is the maximum degree of M

A second attempt: \mathcal{T}^{β} measure

Definition (Development of a set of redexes)

Reduction sequence where each step corresponds to a residual of a redex in the set

- A residual is a copy of a redex left after contracting another
- Notation: $\rho: M \xrightarrow{D_{\beta}^{*}} M^{\prime}$

Idea
i) generalize \mathcal{T} to a family indexed by degrees \mathcal{T}_{D}^{β}
ii) instead of isolatedly counting redexes degrees, consider:

- from set of redexes of degree D
- target M^{\prime} from every development $\rho: M \xrightarrow{D}{ }_{\beta}^{*} M^{\prime}$
- multiset of those $\mathcal{T}_{D-1}^{\beta}\left(M^{\prime}\right)$

Definition

$$
\begin{aligned}
& \mathcal{T}_{D}^{\beta}(M)=\left[\left(i, \mathcal{V}_{i}^{\beta}(M)\right) \mid R \text { is a redex of degree } i \leq D \text { in } M\right] \\
& \mathcal{V}_{D}^{\beta}(M)=\left[\mathcal{T}_{D-1}^{\beta}\left(M^{\prime}\right) \mid \rho: M \xrightarrow{D}{ }_{\beta}^{*} M^{\prime}\right]
\end{aligned}
$$

Problem: our technique to prove it decreases does not work because of erasing

\mathcal{T}^{m} measure

Idea

i) generalize \mathcal{T} to a family indexed by degrees \mathcal{T}_{D}^{m}
ii) instead of isolatedly counting redexes degrees,
consider the multiset of the measures \mathcal{T}_{D-1}^{m} of every target of a development of degree D

Definition

$$
\begin{aligned}
& \mathcal{T}_{D}^{m}(t)=\left[\left(i, \mathcal{V}_{i}^{m}(t)\right) \mid R \text { is a redex of degree } i \leq D \text { in } t\right] \\
& \mathcal{V}_{D}^{m}(t)=\left[\mathcal{T}_{D-1}^{m}\left(t^{\prime}\right) \mid \rho: t \xrightarrow[\rightarrow]{m}_{m}^{*} t^{\prime}\right]
\end{aligned}
$$

Lemmas

- Forget/decrease: forgetful reduction \triangleright decreases \mathcal{T}^{m}
- High/increase: contracting a redex of degree $D>i$ increases (non-strictly) \mathcal{T}_{i}^{m} only $\leq i$, no D, in $\mathcal{T}_{i}^{m} \quad$ no erasing of any $\leq i \quad$ maybe copies of $\leq i$
- Low/decrease: contracting a redex of degree $i<D$ decreases (strictly) \mathcal{T}_{D}^{m} injective mappings from devs of $\mathcal{V}_{D}^{m}(N)$ to devs of $\mathcal{V}_{D}^{m}(M)$

Theorem

$$
M \rightarrow_{\beta} N \quad \Longrightarrow \quad \mathcal{T}^{m}(M)>\mathcal{T}^{m}(N)
$$

Conclusion and future work

Conclusion

- Some Strong Normalization proofs
- Decreasing measures
- Auxiliar non-erasing λ^{m} calculus
- \mathcal{W} measure: based on weight (or accumulated memory) of terms in λ^{m}
- \mathcal{T}^{m} measure: based on anidated multisets of measures of target developments

Future work

- Extend these measures to System F
- Formalize them in a proof assistant

The auxiliar λ^{m}-calculus

Motivation

$$
\beta \text { is erasing } \quad(\lambda x . y) t \rightarrow_{\beta} y
$$

A motivation not to erase

- Klop-Nederpelt lemma $I N C \wedge W C R \wedge W N \Longrightarrow S N \wedge C R$
- We can obtain a decreasing measure from $I N C \wedge W C R \wedge W N$
- by WN there is a normal form v for any t
- by WCR it is the same for every reduct s of t
- by INC inc $(t)<\operatorname{inc}(s)<\operatorname{inc}(v)$
- $\operatorname{dec}(t)=\operatorname{inc}(v)-\operatorname{inc}(t)$

Turing's measure "failing" example

Example: copying a redex of greater degree

$$
\begin{aligned}
& I_{1}=\lambda x^{\tau} . x \\
& I_{2}=\lambda x^{\tau \rightarrow \tau} . x \\
& K=\lambda x^{\tau} \cdot \lambda y^{\tau} \cdot x \\
& S_{K I}=\lambda x^{\tau} . K x\left(I_{1} x\right) \\
& \begin{array}{ll}
\delta\left(I_{1} x\right)=\mathrm{h}(\tau \rightarrow \tau) & =1 \\
\delta\left(I_{2} I_{1}\right)=\mathrm{h}((\tau \rightarrow \tau) \rightarrow(\tau \rightarrow \tau)) & =2 \\
\delta\left(K_{-}\right)=\mathrm{h}(\tau \rightarrow \tau \rightarrow \tau) & =2 \\
\delta\left(S_{K I-}\right)=\mathrm{h}(\tau \rightarrow \tau) & =1
\end{array} \\
& \underset{\mathrm{R} 1}{\mathcal{T}\left(\frac{S_{\frac{K}{S}} \frac{I}{T_{1}}}{} \frac{\left(I_{2} I_{1} x\right.}{\mathrm{U} 2} x\right)}=\left\{\mathrm{S}_{\mathrm{S}}, 2, \mathrm{U}_{\mathrm{R}}, \frac{1}{\mathrm{R}}, \frac{1}{\mathrm{~T}}\right\}
\end{aligned}
$$

A first attempt: \mathcal{T}^{\prime} measure

A working? example (>)

Definition

- $\mathcal{T}_{D}^{\prime}(M)=\left[\left(d, \mathcal{T}_{d-1}^{\prime}(M)\right) \mid R\right.$ is a redex of degree $d \leq D$ in $\left.M\right]$
- $\mathcal{T}^{\prime}(M)=\mathcal{T}_{D}^{\prime}(M)$ where D is the maximum degree of M

Example

$$
M=\frac{S_{\frac{K}{\mathrm{~S} 2} \frac{I}{\mathrm{~T} 1}}\left(\frac{I_{2} I_{1}}{\mathrm{U} 2} x\right)}{\mathrm{R} 1} \quad \longrightarrow_{\beta} \quad \frac{K\left(\frac{I_{2} I_{1} x}{\mathrm{U}^{\prime 2}} x\right.}{\mathrm{S} 2} \frac{\left(I_{1} \frac{\left(\frac{I_{2} I_{1}}{\mathrm{U}^{\prime \prime 2}} x\right)}{\mathrm{T} 1}\right.}{\mathrm{T} 1}=N
$$

$$
\begin{array}{ll}
\mathcal{T}_{2}^{\prime}(M)=\left[\left(\underset{\mathrm{S}}{2}, \mathcal{T}_{1}^{\prime}(M)\right),\left(\underset{\mathrm{U}}{2}, \mathcal{T}_{1}^{\prime}(M)\right),(\underset{\mathrm{R}}{1},[]),(\underset{\mathrm{T}}{1},[])\right] & \mathcal{T}_{1}^{\prime}(M)=[(\underset{\mathrm{R}}{1},[]),(\underset{\mathrm{T}}{1},[])] \\
\mathcal{T}_{2}^{\prime}(N)=\left[\left(\underset{\mathrm{S}}{2}, \mathcal{T}_{1}^{\prime}(M)\right),\left(\underset{\mathrm{U}}{2}, \mathcal{T}_{1}^{\prime}(M)\right),\left(\underset{\mathrm{U}^{\prime \prime}}{2}, \mathcal{T}_{1}^{\prime}(M)\right),(\underset{\mathrm{T}}{1},[])\right] & \left.\mathcal{T}_{1}^{\prime}(N)=[(])\right]
\end{array}
$$

$$
(2,[(1,[]), \quad(1,[])]) \quad>\quad(2,[(1,[])])
$$

A first attempt: \mathcal{T}^{\prime} measure

A failing example (=)

Definition

- $\mathcal{T}_{D}^{\prime}(M)=\left[\left(d, \mathcal{T}_{d-1}^{\prime}(M)\right) \mid R\right.$ is a redex of degree $d \leq D$ in $\left.M\right]$
- $\mathcal{T}^{\prime}(M)=\mathcal{T}_{D}^{\prime}(M)$ where D is the maximum degree of M

Example Example

$$
\left.M=\frac{S_{\frac{K}{\mathrm{~S} 2} \frac{I}{\mathrm{~T} 1}} \frac{\left(I_{1} x\right.}{\mathrm{U} 1}}{\mathrm{R} 1} \quad \longrightarrow_{\beta} \quad \frac{K\left(\frac{\left(I_{1} x\right.}{\mathrm{U}^{\prime} 1}\right)}{\mathrm{S} 2} \frac{\left(\frac{\left(I_{1} x\right)}{\mathrm{U}^{\prime \prime} 1}\right.}{\mathrm{T} 1}\right)=N
$$

$$
\mathcal{T}_{2}^{\prime}(M)=\left[\left(\underset{\mathrm{S}}{2}, \mathcal{T}_{1}^{\prime}(M)\right),(\underset{\mathrm{R}}{1},[]),(\underset{\mathrm{T}}{1},[]),(\underset{\mathrm{U}}{1},[]),\right] \quad \mathcal{T}_{1}^{\prime}(M)=[(\underset{\mathrm{R}}{1},[]),(\underset{\mathrm{T}}{1},[]),(\underset{\mathrm{U}}{1},[]),]
$$

$$
\left.\mathcal{T}_{2}^{\prime}(N)=\left[\left(\underset{\mathrm{S}}{2}, \mathcal{T}_{1}^{\prime}(M)\right),(\underset{\mathrm{T}}{1},[]),\left(\underset{\mathrm{U}^{\prime}}{1},[]\right), \underset{\mathrm{U}^{\prime \prime}}{1},[]\right)\right] \quad \mathcal{T}_{1}^{\prime}(N)=\left[(\underset{\mathrm{T}}{1},[]),\left(\underset{\mathrm{U}^{\prime}}{1},[]\right),\left(\underset{\mathrm{U}^{\prime \prime}}{1},[]\right)\right]
$$

$$
(2,[(1,[]),(1,[]),(1,[])])=(2,[(1,[]),(1,[]),(1,[])])
$$

A second attempt: \mathcal{T}^{β} measure

Definition

$$
\begin{aligned}
& \mathcal{T}_{D}^{\beta}(M)=\left[\left(i, \mathcal{V}_{i}^{\beta}(M)\right) \mid R \text { is a redex of degree } i \leq D \text { in } M\right] \\
& \mathcal{V}_{D}^{\beta}(M)=\left[\mathcal{T}_{D-1}^{\beta}\left(M^{\prime}\right) \mid \rho: M \xrightarrow{D}{ }_{\beta}^{*} M^{\prime}\right]
\end{aligned}
$$

Reasoning about the auxiliar measure \mathcal{V}_{D}^{β}
Consider

$$
\underset{R}{M \rightarrow_{\beta}} N \quad \mathcal{T}_{D}^{\beta}(M)>\mathcal{T}_{D}^{\beta}(N) \quad \mathcal{V}_{D}^{\beta}(M)>\mathcal{V}_{D}^{\beta}(N)
$$

1. Copying a redex of same degree ($=$)

- injective mapping from devs of $\mathcal{V}_{D}^{m}(N)$ to devs of $\mathcal{V}_{D}^{m}(M) \quad R \rho: M \rightarrow_{\beta} N \rightarrow_{\beta}^{*} N^{\prime}$

$$
\mathcal{V}_{D}^{\beta}(M)>\mathcal{V}_{D}^{\beta}(N) \quad \mathcal{T}_{D}^{\beta}(M)>\mathcal{T}_{D}^{\beta}(N)
$$

2. Copying a redex of higher degree ($>$)

- not clear the same can be done: a ρ may erase R

$$
\mathcal{V}_{D}^{\beta}\left(M^{\prime}\right)=\mathcal{V}_{D}^{\beta}\left(N^{\prime}\right) \quad \mathcal{T}_{D}^{\beta}\left(M^{\prime}\right)=\mathcal{T}_{D}^{\beta}\left(N^{\prime}\right)
$$

