Garantías de terminación en λ -cálculos polimórficos

Cristian Sottile

Universidad de Buenos Aires & CONICET & Universidad Nacional de Quilmes

7mo Día del ICC DC, Exactas, UBA 14 de agosto de 2025

Background

Formalismo para representar a todas las funciones computables

Variables x

Funciones λ

Aplicaciones @

Formalismo para representar a todas las funciones computables

Variables x

Funciones λ

Aplicaciones @

Intuición

Formalismo para representar a todas las funciones computables

Variables x

Functiones λ

Aplicaciones @

Intuición

Cristian Sottile

Cómputo

Transformaciones sucesivas en el árbol

Garantías de terminación en λ -cálculos polimórficos

Formalismo para representar a todas las funciones computables

Variables x

Funciones λ

Aplicaciones @

Intuición

Cómputo

Transformaciones sucesivas en el árbol

Formalismo para representar a todas las funciones computables

Variables x

Funciones λ

Aplicaciones @

Intuición

Cómputo

Transformaciones sucesivas en el árbol

Formalismo para representar a todas las funciones computables

Variables x

Funciones λ

Aplicaciones @

Intuición

Cómputo

Transformaciones sucesivas en el árbol

Formalismo para representar a todas las funciones computables

Variables x

Funciones λ

Aplicaciones @

Intuición

Cómputo

Transformaciones sucesivas en el árbol

Formalismo para representar a todas las funciones computables

Variables x

Funciones λ

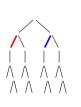
Aplicaciones @

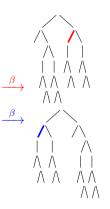
Intuición

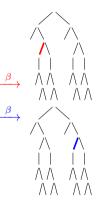
Cómputo

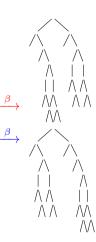
Transformaciones sucesivas en el árbol

(al juntar @ y λ)

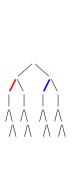

 $\xrightarrow{\beta}$

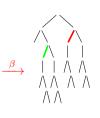

Terminación

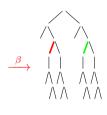

Árbol sin posibles transformaciones

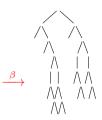

(no hay @ y λ juntos)

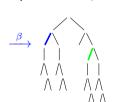
El árbol de ejecución

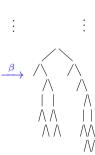


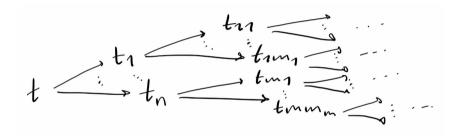


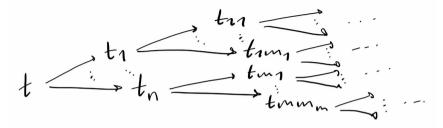


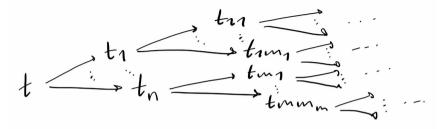



El árbol de ejecución

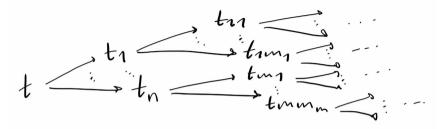






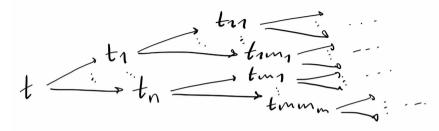


El árbol de ejecución



Todas las ramas del árbol de ejecución son finitas

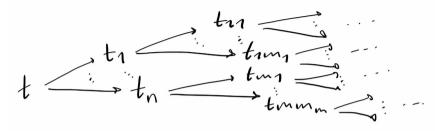
Todas las ramas del árbol de ejecución son finitas


► Es conocida para sistemas clásicos

Todas las ramas del árbol de ejecución son finitas

- Es conocida para sistemas clásicos
- **E**s **importante** para λ -cálculos tipados

nos interesa demostrarla cuando definimos un nuevo cálculo


Todas las ramas del árbol de ejecución son finitas

- Es conocida para sistemas clásicos
- Es **importante** para λ -cálculos tipados

nos interesa demostrarla cuando definimos un nuevo cálculo

Es de las más difíciles de probar

nos interesa seguir encontrando formas de demostrarla

Todas las ramas del árbol de ejecución son finitas

- Es conocida para sistemas clásicos
- ► Es importante para λ-cálculos tipados

nos interesa demostrarla cuando definimos un nuevo cálculo

Es de las más difíciles de probar

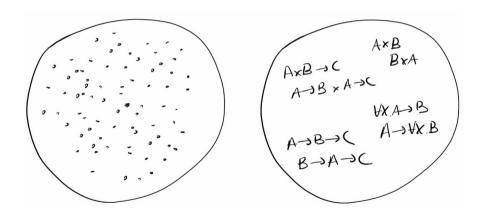
nos interesa seguir encontrando formas de demostrarla

Dos técnicas

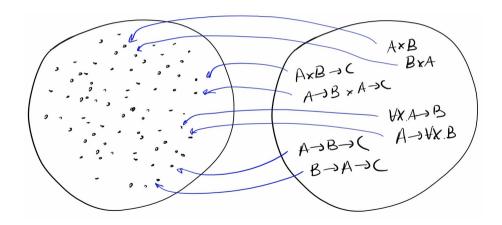
semántica reducibilidad sintáctica medidas decrecientes

Trabajo en progreso

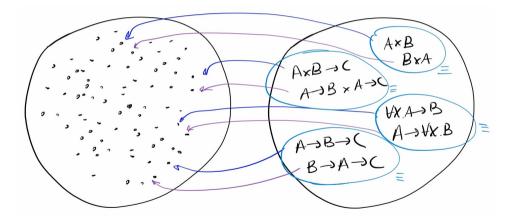
con Alejandro Díaz-Caro


El método (semántico) de reducibilidad [Tait'67, Girard'72]

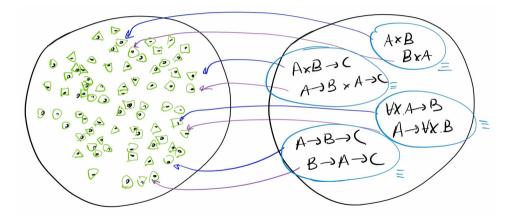
interpretación de tipos en conjuntos con buenas propiedades

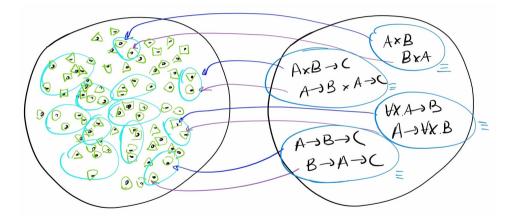

El método (semántico) de reducibilidad [Tait'67, Girard'72]

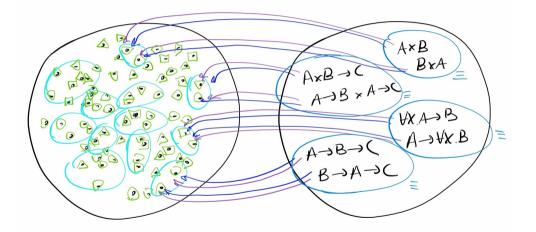
interpretación de tipos en conjuntos con buenas propiedades

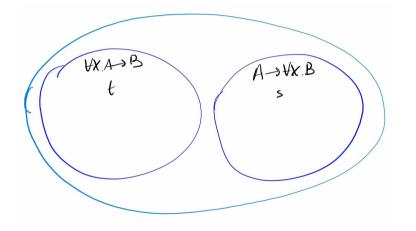


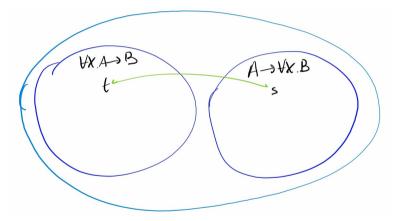
El método (semántico) de reducibilidad [Tait'67, Girard'72]

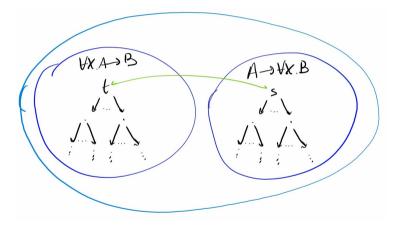

interpretación de tipos en conjuntos con buenas propiedades

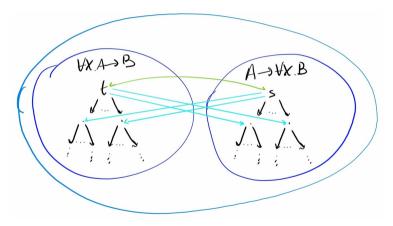

 λ -cálculo polimórfico módulo isomorfisos: equivalencias en tipos y en programas Los desafíos de terminación bajo isomorfismos


Reducibilidad à la Parigot: agregamos estructura a los candidatos


Candidatos nuevos uniendo existentes por isomorfismo


Asociación/interpretación compuesta: cómo asociar clases con clases


Metiéndonos en una clase de equivalencia de tipos


Hay programas relacionados por isomorfismo

Considerando el árbol de ejecución

Ahora comparten pasos de computación

equivalencia entre tipos

equivalencia entre términos WIP

Otro trabajo

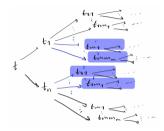
con Pablo Barenbaum y Simona Ronchi della Rocca

El método (sintáctico) de medidas decrecientes [Gandy'80, de Vrijer'87]

función de programas en un orden bien fundado tal que decrece con cada paso de computación

$$\#: \Lambda \to \mathsf{Ord}$$
 $t \to s \implies \#(t) > \#(s)$

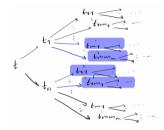
[Barenbaum, Ronchi della Rocca, S.'25]

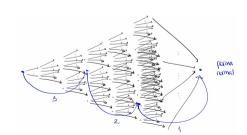

- Existen medidas decrecientes
 - ► Kfoury & Wells'95
 - ► Boudol'03
- La nuestra introduce mejoras
 - dominio más simple: números naturales
 - es completa: funciona para todas las ramas

[Barenbaum, Ronchi della Rocca, S.'25]

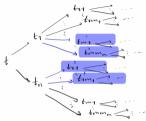
[Barenbaum, Ronchi della Rocca, S.'25]

1. Enriquecemos el árbol

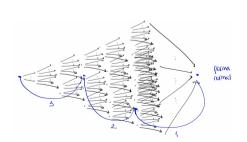


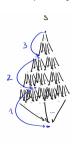

[Barenbaum, Ronchi della Rocca, S.'25]

1. Enriquecemos el árbol


2. Reconstruimos parcialmente el árbol

[Barenbaum, Ronchi della Rocca, S.'25]


1. Enriquecemos el árbol



2. Reconstruimos parcialmente el árbol

3. Buscamos nodos irreproducibles post-ejecución

