Reducibility candidates modulo isomorphisms

<u>Cristian Sottile</u>
UNQ & ICC (UBA-CONICET)

Alejandro Díaz-Caro

37th Symposium on Implementation and Application of Functional Languages
Facultad de Ingeniería, Montevideo, Uruguay

October 3, 2025

Outline

Proposal

we have System $F/_{\sim}$

we want \mathcal{SN}

we need $RED/_{\sim}$

Outline

Proposal

we have System F/~

we want \mathcal{SN}

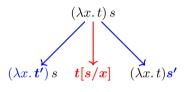
we need $RED/_{\sim}$

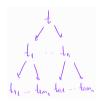
Outline

- Termination
- Reducibility
 - STLC
 - System F
 - System F modulo isomorphisms

What and why

Intuition

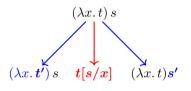




 $\mathcal{S}\!\mathcal{N}=$ all branches finite

What and why

Intuition



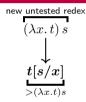
SN = all branches finite

Why?

- safety core language (without fix)
- freedom at implementation
- (my take) should-have unless intended

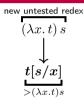
Induction does not work

Induction does not work



 ${\cal S\!N}$ of subterms is **not enough**

Induction does not work



SN of subterms is **not enough**

We need more: also remain SN when applied

Induction does not work

Induction does not work

Remaining SN is **not enough**

Induction does not work

Remaining SN is **not enough**

We need more: recursively remain $\mathcal{S}\mathcal{N}$ when applied

- We need terms to behave well under all possible uses
- We need to know all the possible uses

$$t: A_1 \to \cdots \to A_n \to \tau$$

- We need terms to behave well under all possible uses
- We need to know all the possible uses

- We need terms to behave well under all possible uses
- We need to know all the possible uses

- We need terms to behave well under all possible uses
- We need to know all the possible uses

Intuition

Reducibility for STLC

- We need terms to behave well under all possible uses
- We need to know all the possible uses

- We need terms to behave well under all possible uses
- We need to know all the possible uses

Intuition

Reducibility for STLC

- We need terms to behave well under all possible uses
- We need to know all the possible uses

Reducibility for STLC

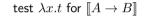
Intuition

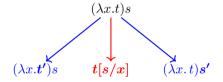
- We need terms to behave well under all possible uses
- We need to know all the possible uses

The RED-set

Testing stage

Intuition





 $\mathsf{CR3}$: neutrality + induction on B: all one–step reducts RED implies RED

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A$$

$$(\Lambda X.t)B:A[B/X]$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

Example

Let
$$I_{\forall} = \forall X.X \rightarrow X$$

$$t: \ \forall X \ X \rightarrow X$$

t

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

Example

Let
$$I_{\forall} = \forall X.X \rightarrow X$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

Example Let $I_{\forall} = \forall X.X \rightarrow X$

$$t: \ \forall X \ X \rightarrow X$$

$$t: \ \forall X \quad X \quad \to \quad X$$

$$t \quad X \quad \overset{\cup}{x^X} \in \mathcal{SN}_X$$

.

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A$$

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

Example

Let
$$I_{\forall} = \forall X.X \rightarrow X$$

$$t: \ \forall X \ X \rightarrow X$$

$$t: \quad \forall X \quad X \quad \rightarrow \quad \ X$$

$$t \quad X \quad x^X \in \mathcal{SN}_X$$

$$t I_{\forall}$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

$$t: \ \forall X \quad X \quad \rightarrow \quad X$$

$$t \quad X \quad x^X \in \mathcal{SN}_X$$

$$\begin{array}{cccc} t: & \forall X & X & \to & X \\ & I_{\forall} & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ &$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

$$t: \begin{array}{ccc} \forall X & X & \to & X \\ & & & & \\ t & & & & \\ \end{array}$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket \quad = \quad \{ \, t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \ \ \}$$

$$t: \ \forall X \quad X \quad \to \quad X$$

$$t \quad X \quad x^X \quad \in \ \mathcal{SN}_X$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

$$t: \ \forall X \quad X \quad \to \quad X$$

$$t \quad X \quad x^X \quad \in \ \mathcal{SN}_X$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

$$t: \ \forall X \quad X \quad \to \quad X$$

$$t \quad X \quad x^X \quad \in \quad \mathcal{SN}_X$$

Unlike λ^{\rightarrow} , not so easy to find the RED–set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

Example

Let
$$I_{\forall} = \forall X.X \rightarrow X$$

Unlike λ^{\rightarrow} , not so easy to find the RED-set

Type application substitutes both the term and the type

$$\Lambda X.t: \forall X.A \qquad (\Lambda X.t)B: A[B/X]$$

Following λ^{\rightarrow} approach fails

$$\llbracket \forall X.A \rrbracket = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}. \ tB \in \llbracket A[B/X] \rrbracket \} \}$$

Example

Let
$$I_{\forall} = \forall X.X \rightarrow X$$

Parametric RED-set

- ullet Avoid substitution: stop at X
- Parameterize: save I_\forall into a mapping $\rho: \mathsf{TVar} \to \mathsf{RED}\text{-set}$

what to put into ρ for B?

B is a type $\mbox{ we can't put } [\![B]\!] \mbox{ what RED-set?}$

what to put into ρ for B?

B is a type we can't put [B]what RED-set?

Candidates

Abstractly describe RED-set by properties

Reducibility for System F

Fetching stage

what to put into ρ for B?

B is a type we can't put $[\![B]\!]$ what RED-set?

Candidates

- Abstractly describe RED-set by properties
- **②** Define the notion of **reducibility candidate of a type**: \mathcal{R}_A

any set satisfying CR1, CR2 and CR3

Reducibility for System F

Fetching stage

what to put into ρ for B?

B is a type we can't put $[\![B]\!]$ what RED–set?

Candidates

- Abstractly describe RED-set by properties
- ② Define the notion of **reducibility candidate of a type**: \mathcal{R}_A any set satisfying CR1, CR2 and CR3
- **9** Parameterize $\llbracket \cdot \rrbracket$ by a map $\rho : \mathsf{TVar} \to \mathcal{R}$

$$[\![X]\!]_{\rho} = \rho(X)$$

Reducibility for System F

Fetching stage

what to put into ρ for B?

B is a type we can't put $[\![B]\!]$ what RED-set?

Candidates

Abstractly describe RED-set by properties

Reducibility for System F

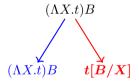
- ② Define the notion of **reducibility candidate of a type**: \mathcal{R}_A any set satisfying CR1, CR2 and CR3
- **9** Parameterize $\llbracket \cdot \rrbracket$ by a map $\rho : \mathsf{TVar} \to \mathcal{R}$

$$[\![X]\!]_{\rho} = \rho(X)$$

• Make \forall -step range over all $\mathcal R$ for any type B

$$\llbracket \forall X.A \rrbracket_{\rho} = \{ t \in \forall X.A \mid \forall B \in \mathcal{K}, \mathcal{C}_{B} \in \mathcal{R}_{B}. \ tB \in \llbracket A \rrbracket_{[\rho \cdot X \mapsto \mathcal{C}_{B}]} \}$$

when testing $\Lambda X.t: \forall X.A$



tests from $[\![A]\!]_{\rho\cdot [\mathcal{C}_B/X]}$ are left to the CR3 induction

Reducibility for System F

Equivalence on types

$$A \to (B \times C) \sim (A \to B) \times (A \to C)$$

Equivalence on types

$$A \to (B \times C) \quad \sim \quad (A \to B) \times (A \to C)$$

Typing rules

$$\frac{\Gamma \vdash t : A \qquad A \sim B}{\Gamma \vdash t : B}$$

Equivalence on types

$$A \to (B \times C) \sim (A \to B) \times (A \to C)$$

Typing rules

$$\frac{\Gamma \vdash t : A \qquad A \sim B}{\Gamma \vdash t : B}$$

Equivalence on terms

$$\begin{array}{ccc} \lambda x. \langle t, s \rangle & \leftrightarrows & \langle \lambda x. t, \lambda x. s \rangle \\ \langle t, s \rangle u & \leftrightarrows & \langle tu, su \rangle \end{array}$$

Equivalence on types

$$A \to (B \times C) \sim (A \to B) \times (A \to C)$$

Typing rules

$$\frac{\Gamma \vdash t : A \qquad A \sim B}{\Gamma \vdash t : B}$$

Equivalence on terms

$$\begin{array}{ccc} \lambda x. \langle t, s \rangle & \leftrightarrows & \langle \lambda x. t, \lambda x. s \rangle \\ \langle t, s \rangle u & \leftrightarrows & \langle t u, s u \rangle \end{array}$$

Reduction

$$\rightarrow ::= \rightleftharpoons^* \circ \hookrightarrow$$

Equivalence on types

$$A \to (B \times C) \sim (A \to B) \times (A \to C)$$

Typing rules

$$\frac{\Gamma \vdash t : A \qquad A \sim B}{\Gamma \vdash t : B}$$

Equivalence on terms

$$\begin{array}{ccc} \lambda x. \langle t, s \rangle & \leftrightarrows & \langle \lambda x. t, \lambda x. s \rangle \\ \langle t, s \rangle u & \leftrightarrows & \langle t u, s u \rangle \end{array}$$

Reduction

$$\rightarrow ::= \rightleftharpoons^* \circ \hookrightarrow$$

$$\langle \lambda x.x, \lambda x.\lambda y.x \rangle s \rightleftharpoons (\lambda x.\langle x, \lambda y.x \rangle) s \hookrightarrow \langle s, \lambda y.s \rangle$$

(Simple) Reducibility modulo isomorphisms

Problems

Problem 1: fetching (later)

Problem 2: testing

(Simple) Reducibility modulo isomorphisms

Problems

Problems

Problem 1: fetching (later) Problem 2: testing

Problem 2.a: Lack of neutrality Problem 2.b: Knowing all the u_i

Problems

(Simple) Reducibility modulo isomorphisms

Problems

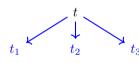
Problem 1: fetching (later)

Problem 2: testing

Problem 2.a: Lack of neutrality

Problem 2.b: Knowing all the u_i

Testing



 \rightleftharpoons

 $\rightleftarrows \ldots \rightleftarrows$

(Simple) Reducibility modulo isomorphisms

Problems

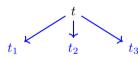
Problem 1: fetching (later)

Problem 2: testing

Problem 2.a: Lack of neutrality

Problem 2.b: Knowing all the u_i

Testing



Problems

Problems

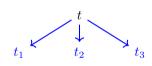
Problem 1: fetching (later)

Problem 2: testing

Problem 2.a: Lack of neutrality

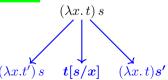
Problem 2.b: Knowing all the u_i

Testing

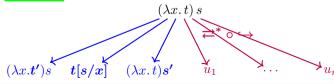


ightarrow ... ightharpoonup

STLC



STLC/~



Solving lack of neutrality

- Neutrality is used to test one eliminator at a time
- Constructors commutation breaks neutrality
- "Local" testing does not work

Solution 2.a

Solving lack of neutrality

- Neutrality is used to test one eliminator at a time
- Constructors commutation breaks neutrality
- "Local" testing does not work

Fetching

all at once

$$[A_1 \to \ldots \to A_n \to \tau]$$

Solution 2.a

Solving lack of neutrality

- Neutrality is used to test one eliminator at a time
- Constructors commutation breaks neutrality
- "Local" testing does not work

Fetching

all at once

$$[\![A_1 \to \ldots \to A_n \to \tau]\!]$$

Testing

all possible eliminators $\vec{u} = (u_1, \dots, u_n)$ from $[\![A_1]\!] \times \dots \times [\![A_n]\!]$

(Simple) Reducibility modulo isomorphisms

Solution 2.a

Solving lack of neutrality

- Neutrality is used to test one eliminator at a time
- Constructors commutation breaks neutrality
- "Local" testing does not work

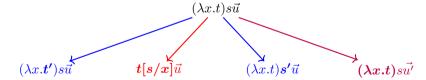
Fetching

all at once

$$[A_1 \to \ldots \to A_n \to \tau]$$

Testing

all possible eliminators $\vec{u} = (u_1, \dots, u_n)$ from $[\![A_1]\!] \times \dots \times [\![A_n]\!]$



Solution 2.a

Solving lack of neutrality

- Neutrality is used to test one eliminator at a time
- Constructors commutation breaks neutrality
- "Local" testing does not work

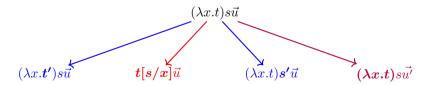
Fetching

all at once

$$[A_1 \to \ldots \to A_n \to \tau]$$

Testing

all possible eliminators $\vec{u} = (u_1, \dots, u_n)$ from $[\![A_1]\!] \times \dots \times [\![A_n]\!]$



Remark

the proof obligation is now SN instead of RED

Equivalence on types

$$A \to (B \times C) \sim (A \to B) \times (A \to C)$$

 $\forall X.(A \times B) \sim (\forall X.A) \times (\forall X.B)$

Equivalence on types

$$A \to (B \times C) \sim (A \to B) \times (A \to C)$$

 $\forall X.(A \times B) \sim (\forall X.A) \times (\forall X.B)$

Typing rules

$$\frac{\Gamma \vdash t : A \qquad A \sim B}{\Gamma \vdash t : B}$$

Equivalence on types

$$A \to (B \times C) \sim (A \to B) \times (A \to C)$$

 $\forall X.(A \times B) \sim (\forall X.A) \times (\forall X.B)$

Typing rules

$$\frac{\Gamma \vdash t : A \qquad A \sim B}{\Gamma \vdash t : B}$$

Equivalence on terms

$$\begin{array}{cccc} \lambda x. \langle t,s \rangle & \leftrightarrows & \langle \lambda x.t, \lambda x.s \rangle \\ \langle t,s \rangle u & \leftrightarrows & \langle tu,su \rangle \\ \Lambda X. \langle t,s \rangle & \leftrightarrows & \langle \Lambda X.t, \Lambda X.s \rangle \\ \langle t,s \rangle A & \leftrightarrows & \langle tA,sA \rangle \end{array}$$

Equivalence on types

$$A \to (B \times C) \sim (A \to B) \times (A \to C)$$

 $\forall X.(A \times B) \sim (\forall X.A) \times (\forall X.B)$

Typing rules

$$\frac{\Gamma \vdash t : A \qquad A \sim B}{\Gamma \vdash t : B}$$

Equivalence on terms

$$\begin{array}{cccc} \lambda x.\langle t,s\rangle &\leftrightarrows & \langle \lambda x.t,\lambda x.s\rangle \\ \langle t,s\rangle u &\leftrightarrows & \langle tu,su\rangle \\ \Lambda X.\langle t,s\rangle &\leftrightarrows & \langle \Lambda X.t,\Lambda X.s\rangle \\ \langle t,s\rangle A &\leftrightarrows & \langle tA,sA\rangle \end{array}$$

Reduction

$$\rightarrow ::= \rightleftharpoons^* \circ \hookrightarrow$$

Reducibility for System $F/_{\sim}$

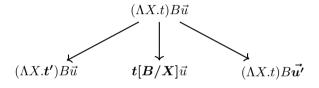
Testing/∼ we agreed on testing "globally"



Reducibility for System F/

Testing/_∼

we agreed on testing "globally"



But...

which are the possible \vec{u} of $[X]_{\rho}$?

- $[X]_{\rho} = \rho(X)$ is any candidate
- we only know CR1, CR2 and CR3
- ullet we don't have enough information to range over $ec{u}$

Giving structure to candidates

Giving structure to candidates

Family of sets of candidates inductively!

$$\frac{\mathcal{S}\mathcal{N}_{A} \in \mathcal{R}_{A}}{\mathcal{S}\mathcal{N}_{A} \in \mathcal{R}_{A}} \qquad \frac{U \in \mathcal{R}_{A} \quad V \in \mathcal{R}_{B}}{U \tilde{\rightarrow} V \in \mathcal{R}_{A \to B}}$$

$$\frac{X \subseteq \mathcal{R}_{A}}{\bigcap X \in \mathcal{R}_{A}} \qquad \frac{(U_{B} \in \mathcal{R}_{A[B/X]})_{B \in \mathcal{K}}}{\tilde{\forall} B. U_{B} \in \mathcal{R}_{\forall X.A}}$$

Giving structure to candidates

Family of sets of candidates inductively!

$U \in \mathcal{R}_A \quad V \in \mathcal{R}_B$

$$\overline{SN_A \in \mathcal{R}_A} \qquad \overline{U \tilde{\rightarrow} V \in \mathcal{R}_{A \to B}}$$

$$V \in \mathcal{R} \qquad (U_B \in \mathcal{R}_{A(B/Y)})_{B \in \mathcal{K}}$$

$$\frac{X \subseteq \mathcal{R}_A}{\bigcap X \in \mathcal{R}_A} \qquad \frac{(\delta B \in \mathcal{R}_A[B/X])B}{\tilde{\forall} B. U_B \in \mathcal{R}_{\forall X.A}}$$

Example

$$\frac{\mathcal{SN}_{A_n} \in \mathcal{R}_{A_n}}{\mathcal{SN}_{A_n} \tilde{\to} \mathcal{SN}_X \in \mathcal{R}_{A_n \to X}}$$
:

$$\frac{X \subseteq \mathcal{R}_A}{\bigcap X \in \mathcal{R}_A} \qquad \frac{(U_B \in \mathcal{R}_{A[B/X]})_{B \in \mathcal{K}}}{\tilde{\forall} B. U_B \in \mathcal{R}_{\forall X.A}} \qquad \frac{\overline{\mathcal{S}} \mathcal{N}_{A_1} \in \mathcal{R}_{A_1}}{\overline{\mathcal{S}} \mathcal{N}_{A_1} \tilde{\rightarrow} \dots \tilde{\rightarrow} \mathcal{S} \mathcal{N}_{A_n} \tilde{\rightarrow} \mathcal{S} \mathcal{N}_X \in \mathcal{R}_{A_1 \to \dots \to A_n \to X}}$$

Giving structure to candidates

Family of sets of candidates inductively!

$\frac{X \subseteq \mathcal{R}_A}{\bigcap X \in \mathcal{R}_A} \qquad \frac{U \in \mathcal{R}_A \quad V \in \mathcal{R}_B}{U \tilde{\to} V \in \mathcal{R}_{A \to B}}$ $\frac{X \subseteq \mathcal{R}_A}{\bigcap X \in \mathcal{R}_A} \qquad \frac{(U_B \in \mathcal{R}_{A[B/X]})_{B \in \mathcal{K}}}{\tilde{\forall} B. U_B \in \mathcal{R}_{\forall X|A}}$

Example

$$\frac{\mathcal{SN}_{A_n} \in \mathcal{R}_{A_n}}{\mathcal{SN}_{A_n} \tilde{\to} \mathcal{SN}_X \in \mathcal{R}_{A_n \to X}}}{\mathcal{SN}_{A_n} \tilde{\to} \mathcal{SN}_X \in \mathcal{R}_{A_n \to X}}$$

$$\vdots$$

$$\overline{\mathcal{SN}_{A_1} \tilde{\to} \dots \tilde{\to} \mathcal{SN}_{A_n} \tilde{\to} \mathcal{SN}_X \in \mathcal{R}_{A_1 \to \dots \to A_n \to X}}$$

Fetching

• the RED-set

$$[\![A]\!]_{\rho} \in \mathcal{R}_{A} \qquad [\![B]\!]_{\rho} \in \mathcal{R}_{B}$$

$$[\![A]\!]_{\rho} = [\![A]\!]_{\rho} \tilde{\rightarrow} [\![B]\!]_{\rho} \in \mathcal{R}_{A \to B}$$

ullet the eliminators $ec{u}$

$$[\![\overline{\mathcal{SN}_X \in \mathcal{R}_X}]\!]_{\rho}^{\perp} = \varepsilon$$

Giving structure to candidates

Family of sets of candidates inductively!

$$\frac{\mathcal{S}\mathcal{N}_A \in \mathcal{R}_A}{\mathcal{S}\mathcal{N}_A \in \mathcal{R}_A} \qquad \frac{U \in \mathcal{R}_A \quad V \in \mathcal{R}_B}{U \tilde{\to} V \in \mathcal{R}_{A \to B}}$$

$$\frac{X \subseteq \mathcal{R}_A}{\bigcap X \in \mathcal{R}_A} \qquad \frac{(U_B \in \mathcal{R}_{A[B/X]})_{B \in \mathcal{K}}}{\tilde{\forall} B. U_B \in \mathcal{R}_{\forall X.A}}$$

Example

$$\frac{\mathcal{SN}_{A_n} \in \mathcal{R}_{A_n}}{\mathcal{SN}_{A_n} \tilde{\to} \mathcal{SN}_X \in \mathcal{R}_{A_n \to X}}}{\mathcal{SN}_{A_n} \tilde{\to} \mathcal{SN}_X \in \mathcal{R}_{A_n \to X}}$$

$$\vdots$$

$$\overline{\mathcal{SN}_{A_1} \tilde{\to} \dots \tilde{\to} \mathcal{SN}_{A_n} \tilde{\to} \mathcal{SN}_X \in \mathcal{R}_{A_1 \to \dots \to A_n \to X}}$$

Fetching

the RFD-set

$$[\![A \to B]\!]_{\rho} = \frac{[\![A]\!]_{\rho} \in \mathcal{R}_{A} \qquad [\![B]\!]_{\rho} \in \mathcal{R}_{B}}{[\![A]\!]_{\rho} \tilde{\to} [\![B]\!]_{\rho} \in \mathcal{R}_{A \to B}}$$

• the eliminators \vec{u}

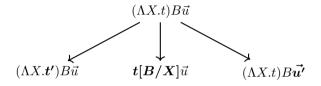
$$[\![\overline{\mathcal{SN}_X \in \mathcal{R}_X}]\!]_{\rho}^{\perp} = \varepsilon$$

$$\vdots \\ [\![\overline{\mathcal{SN}_A \tilde{\to} \mathcal{SN}_B} \in \mathcal{R}_{A \to B}]\!]_o^{\perp} = (u)_{u \in \mathcal{SN}_A}$$

Reducibility for System $F/_{\sim}$

Problem 2.a solved

Testing/~



Now

which are the possible \vec{u} of $[X]_{\rho}$?

- $[X]_{\rho} = \rho(X)$ is any candidate
- we only know CR1, CR2 and CR3 have structure for $\rho(X)$
- we don't do! have enough information
- range over the eliminators \vec{u} in $\rho(X)$

RED for System $F/_{\sim}$

Problem 1

Against which terms should $\langle \lambda x^A.t, \lambda x^A.s \rangle$ be tested?

Fetching/_∼

Problem 1

Against which terms should $\langle \lambda x^A.t, \lambda x^A.s \rangle$ be tested?

But modulo isomorphisms

RED for System $F/_{\sim}$

- types are part of an equivalence class
- restrictions comes from all the class

$$(A \to B) \times (A \to C) \quad A \to (B \times C)$$

Problem 1

Against which terms should $\langle \lambda x^A.t, \lambda x^A.s \rangle$ be tested?

But modulo isomorphisms

- types are part of an equivalence class
- restrictions comes from all the class

Recall that

- [.]. follows types fetching restrictions
- by induction m(A)
- \bullet m(A) is a stable measure on types

$$(A \to B) \times (A \to C) \quad A \to (B \times C)$$

Problem 1

Against which terms should $\langle \lambda x^A.t, \lambda x^A.s \rangle$ be tested?

But modulo isomorphisms

- types are part of an equivalence class
- restrictions comes from all the class

Recall that

- [.]. follows types fetching restrictions
- by induction m(A)
- \bullet m(A) is a stable measure on types

$$(A \to B) \times (A \to C) \quad A \to (B \times C)$$

Parigot candidates/~

Changes in the family \mathcal{R}_* due to isomorphisms

Parigot candidates/ $_{\sim}$

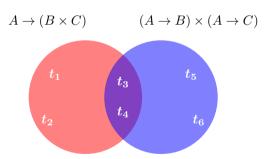
Changes in the family \mathcal{R}_* due to isomorphisms

Family of sets of candidates inductively!

$$\frac{SN_A \in \mathcal{R}_A}{SN_A \in \mathcal{R}_A} \qquad \frac{U \in \mathcal{R}_A \quad V \in \mathcal{R}_B}{U \tilde{\to} V \in \mathcal{R}_{A \to B}}$$

$$\frac{X \subseteq \mathcal{R}_A}{\bigcap X \in \mathcal{R}_A} \qquad \frac{(U_B \in \mathcal{R}_{A[B/X]})_{B \in \mathcal{K}}}{\tilde{\forall} B. U_B \in \mathcal{R}_{\forall X.A}}$$

$$\frac{F \in \mathcal{R}_A \quad G \in \mathcal{R}_B \quad A \equiv B}{F \cap G \in \mathcal{R}_A}$$



Problem 2.b

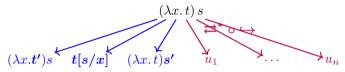
What are the one-step reducts of a term?

Testing/ $_{\sim}$

Problem 2.b

RED for System $F/_{\sim}$

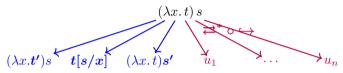
What are the one-step reducts of a term?



RED for System $F/_{\sim}$

Problem 2.b

What are the one-step reducts of a term?



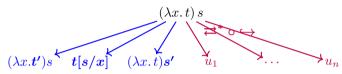
Solution

characterize classes of terms

RED for System $F/_{\sim}$

Problem 2.b

What are the one-step reducts of a term?



Solution

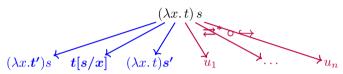
- characterize classes of terms
- look at the one-step redex of each shape

Testing/

Problem 2.b

RED for System F/

What are the one-step reducts of a term?

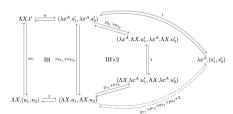


Solution

- characterize classes of terms
- look at the one-step redex of each shape

Lemma 3.2 (The class of type abstractions). If $\Lambda X.t' \rightleftharpoons^n s$. then s is equal to:

- 1. $\Delta X.s'$ with $t' \rightleftharpoons^m s'$ and m < n
- 2. λx^A .s' with $t' \rightleftharpoons^{m_1} \lambda x^A$.r, $s' \rightleftharpoons^{m_2} \Lambda X$.r, $m_1 + 1 + m_2 \le$ n, and $X \notin FV(A)$
- 3. $\langle s_1', s_2' \rangle$ with $t' \rightleftharpoons^{m_1} \langle r_1, r_2 \rangle$, $s_i' \rightleftharpoons^{m_{2i}} \Lambda X.r_i$, and $m_1 +$ $1 + m_{2_1} + m_{2_2} \le n$
- $m_2 \leq n$



Conclusions

- ullet We need to prove \mathcal{SN} in a System F modulo isomorphisms
- The calculus has no neutrality
- Parigot's approach to reducibility does not use neutrality
- We are adapting Parigot's technique to modulo isomorphisms by
 - relating candidates of isomorphic types
 - fetching restrictions from all the equivalents
 - characterizing the one-step reducts of all term-classes