Reducibility candidates modulo isomorphisms

Cristian Sottile Alejandro Diaz-Caro
UNQ & ICC (UBA-CONICET) Inria, LORIA & UNQ

37th Symposium on Implementation and Application of Functional Languages

Facultad de Ingenieria, Montevideo, Uruguay
October 3, 2025

CONICET Universidad

& TN
) 1/ Al) ;
" & (S Universidad de Buenos Aires . Nacional
\ > A o £ Argentina virtus robur et studium Q (l(‘/ (21] 1 ll]’l(‘s

Outline

we have ISNRCEN N we want Y we need RED/.

Cristian Sottile Reducibility candidates modulo isomorphisms

we have ISNRCEN N we want Y we need RED/.

@ Termination
@ Reducibility

e STLC

o System F
o System F modulo isomorphisms

Reducibility candidates modulo isomorphisms

Cristian Sottile

What and why

Intuition

{
(Ax.t)s / \
\

AN

Az.t')s t[s/x] (Az.t)s bay o i,

i

tam,

SN = all branches finite

Cristian Sottile Reducibility candidates modulo isomorphisms

What and why

Intuition
{
(Ax.t)s / \
1, I,
VANV
Az.t')s t[s/x] (Az.t)s bay o Aaon, A Ao,
SN = all branches finite
Why?

o safety core language (without fix)
o freedom at implementation

@ (my take) should—have unless intended

Cristian Sottile Reducibility candidates modulo isomorphisms

Termination

How (not by induction on terms)

Induction does not work

new untested redex
| pu— |

(A\x.t) s

l

t[s/x]
| IS—
>(Axz.t)s

Cristian Sottile Reducibility candidates modulo isomorphisms

Termination

How (not by induction on terms)

Induction does not work

new untested redex
| pu— |

(A\x.t) s

i SV of subterms is
tls/x]

—_
>(Az.t)s

Cristian Sottile Reducibility candidates modulo isomorphisms

Termination

How (not by induction on terms)

Induction does not work

new untested redex
| pu— |

(A\x.t) s

i SV of subterms is
tls/x]

—_
>(Az.t)s

We need more : also remain S\ when applied

Cristian Sottile Reducibility candidates modulo isomorphisms

Termination

How (not by induction on terms)

Induction does not work

(M\x.t)su

t[s/x] u
| I
SN by H

Cristian Sottile Reducibility candidates modulo isomorphisms

Termination

How (not by induction on terms)

Induction does not work

(Az.t) su
Remaining SN is [l qsI1T4y
t[s/x] u
| I— |
SN by H

Cristian Sottile Reducibility candidates modulo isomorphisms

Termination

How (not by induction on terms)

Induction does not work

(Ax.t) su
Remaining SV is [
t[s/x] u
| E—
SN by IH

We need more : recursively remain SN when applied

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for STLC Fetching stage

Intuition
@ We need terms to behave well under all possible uses

@ We need to know all the possible uses

t: Ay - -+ > A, — T

!

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Car

Reducibility for STLC Fetching stage

Intuition
@ We need terms to behave well under all possible uses

@ We need to know all the possible uses

t: Ay - -+ > A, — T

!

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for STLC Fetching stage

Intuition
@ We need terms to behave well under all possible uses

@ We need to know all the possible uses

t: Ay - -+ > A, — T
w \
t S1

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for STLC Fetching stage

Intuition
@ We need terms to behave well under all possible uses

@ We need to know all the possible uses

t: Ay - -+ > A, — T
t S1 e

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility

Reducibility for STLC Fetching stage

Intuition
@ We need terms to behave well under all possible uses

@ We need to know all the possible uses

t: Ay - -+ > A, — T
t S1 . Sn

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility

Reducibility for STLC Fetching stage

Intuition
@ We need terms to behave well under all possible uses

@ We need to know all the possible uses

t: Ay - -+ > A, — T
t s Sn €

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility

Reducibility for STLC Fetching stage

Intuition
@ We need terms to behave well under all possible uses

@ We need to know all the possible uses

t: Ay - -+ > A, — T
t s S, € SN,

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility

Reducibility for STLC Fetching stage

Intuition
@ We need terms to behave well under all possible uses

@ We need to know all the possible uses

t: Ay - -+ > A, — T
W w \J/
t s S, € SN,
The RED-—set
[r] = SN
[A—=B] = {teA— B|Vse[A].ts€[B]}

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility

Reducibility for STLC Testing stage

Intuition
test \z.t for [A — B]
(A\z.t)s

(A\z.t')s t[s/x] (Ax.t)s’

: neutrality 4+ induction on B: all one-step reducts RED implies RED

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Can

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX.t)B : A[B/X]

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AXt:VX.A (AX.t)B: A|B/X]
Following A~ approach fails
[vx.A] = {tevx.A|vBeKk. B < |[HEEI}
Example Let Iy =VX.X - X

t: VX X - X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AXt:VX.A (AX.t)B: A|B/X]
Following A~ approach fails
[vx.A] = {tevx.A|vBeKk. B < |[HEEI}
Example Let Iy =VX.X - X
t: VX X — X

w
t X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX.t)B: A[B/X]
Following A~ approach fails
[vx.A] = {tevx.A|vBeKk. B |[HEEI}
Example Let Iy =VX.X - X
t: vX X — X

W
t X 2X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX.t)B: A[B/X]
Following A~ approach fails
[VX.A] = {teVX.A|VBeK.tBe|EEPYl}

Example Let Iy =VX.X - X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX4)B: A[B/X]

Following A~ approach fails

[VX.A] = {teVX.A|VBeK.Be|ZELel }

Example Let Iy =VX.X - X
t: VX X — X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX4)B: A[B/X]

Following A~ approach fails

[VX.A] = {teVX.A|VBeK.Be|ZELel }

Example Let Iy =VX.X - X
t: VX X — X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX4)B: A[B/X]

Following A~ approach fails

[VX.A] = {teVX.A|VBeK.Be|ZELel }

Example Let Iy =VX.X - X
t: VX X —» X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AXt:VX.A (AX)B: A[B/X]
Following A~ approach fails
[VX.A] = {teVX.A|VBeK.Be|ZELel }

Example Let Iy =VX.X - X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AXt:VX.A (AX)B: A[B/X]
Following A~ approach fails
[VX.A] = {teVX.A|VBeK.Be|ZELel }

Example Let Iy =VX.X - X

Cristian Sottile Reducibility candidates modulo isomorphisms

STLC System F Ca

Reducibility

Reducibility for System F

Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

(AX.)B : A[B/X]

AXt:VX.A
Following A~ approach fails
[VX.A] = {teVX.A|VBeK.Be|ZELel }
Example Let Iy =VX.X - X
t: VX X —» X
t: VX X — X Iy —» Iy —
w w w
X X € SN x t Iy t Iy t Iy

Reducibility candidates modulo isomorphisms

Cristian Sottile

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A7, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX4)B: A[B/X]

Following A~ approach fails

[VX.A] = {teVX.A|VBeK.Be|ZELel }

Example Let Iy =VX.X - X

t: VX X — X
- X I — Iy — Iy

t X 2¥ € SNy t L t Iy t Iy t

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F Ca

Reducibility for System F Problem

Unlike A, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX.t)B: A[B/X]

Following A~ approach fails

[VX.A] = {teVX.A|VBeK.B < |[EEBIN}

Example Let Iy =VX.X - X
oYX X o be t: VX X — X
W Iy — Iy — Iy
X w w w

t I, t Iy t Iy t

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility STLC System F

Reducibility for System F Problem

Unlike A, not so easy to find the RED—set
Type application substitutes both the term and the type

AX.t:VX.A (AX.t)B : A[B/X]

Following A~ approach fails
[VX.A] = {teVX.A|VBeK.tBe|EELl}
‘Example Let Iy = VX.X —» X

fovx t: VX X — X

Iy — Iy — Iy
W w W
t Iy t I t Iy t

X = X
W
t X X € SN x

Parametric RED—set

@ Avoid substitution: stop at X
@ Parameterize: save Iy into a mapping p : TVar — RED-set

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility F Candidates by Girard

Reducibility for System F Fetching stage

what to put into p for B?

B is a type we can't put [B] what RED-set?

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility F Candidates by Girard

Reducibility for System F Fetching stage

what to put into p for B?

B is a type we can't put [B] what RED-set?

@ Abstractly describe RED—set by properties

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility S) F Candidates by Girard

Reducibility for System F Fetching stage

what to put into p for B?

B is a type we can't put [B] what RED-set?

@ Abstractly describe RED—set by properties
@ Define the notion of reducibility candidate of a type: R 4

any set satisfying CR1, CR2 and CR3

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility S) F Candidates by Girard

Reducibility for System F Fetching stage

what to put into p for B?

B is a type we can't put [B] what RED-set?

@ Abstractly describe RED—set by properties
@ Define the notion of reducibility candidate of a type: R 4

any set satisfying CR1, CR2 and CR3

@ Parameterize [-] by a map p: TVar = R
[X], = »(X)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility S F Candidates by Girard

Reducibility for System F Fetching stage

what to put into p for B?

B is a type we can't put [B] what RED-set?

@ Abstractly describe RED—set by properties
@ Define the notion of reducibility candidate of a type: R 4

any set satisfying CR1, CR2 and CR3

@ Parameterize [-] by a map p: TVar = R
[X], = »(X)

@ Make V-step range over all R for any type B

[VX.A], = {teVX.A|VBeK,CseRp. tB < |[AIpKEE)}

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility F Candidates by Girard

Reducibility for System F Testing stage

when testing AX.t:VX.A

(AX.t)B

(AX4)B t[B/X]

tests from [A],.c,/x) are left to the CR3 induction

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~ Parigot System F Candidates/~, Reduction/ ~

Simply typed \—calculus modulo isomorphisms

Equivalence on types

A= (BxC) ~ (A= B)x(A—C)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~ Parigot System F Candidates/~, Reduction/ ~

Simply typed \—calculus modulo isomorphisms

Equivalence on types

A= (BxC) ~ (A= B)x(A—C)

Typing rules

F'Et: A A~B
I'-t:B

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~ Parigot System F Candidates/~, Reduction/ ~

Simply typed \—calculus modulo isomorphisms

Equivalence on types
A= (Bx(C) ~ (A-B)x(A—0C)

Typing rules
F'Ft: A A~B

I'kt: B
Equivalence on terms
Az.(t,s) S (Ax.t, Az.s)
t,s)u S (tu, su)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~ Parigot System F Candidates/ ~

Simply typed \—calculus modulo isomorphisms

Equivalence on types

A= (BxC) ~ (A= B)x(A—C)

Typing rules

F'Et: A A~B

I'tt:B
Az.(t,s) S (Ax.t, Az.s)
t,s)u S (tu, su)
- =20

Reducibility candidates modulo isomorphisms

Cristian Sottile

Reduction/ ~

Reducibility modulo isomorphisms STLC/~, Parigot System F Candidates/~, Reduction

Simply typed \—calculus modulo isomorphisms

Equivalence on types

A= (BxC) ~ (A= B)x(A—C)

Typing rules
F'Ft: A A~B

I'-t:B

Equivalence on terms
(A\x.t, Azx.s)

—
—
—
—

(tu, su)

Az.x, e y.x)s = (Azfx, Ay.x))s <= (s, \y.s)

Reducibility candidates modulo isomorphisms

Cristian Sottile

Reducibility modulo isomorphisms STLC/~ Parigot System Candidates/~, Reduction/ ~

(Simple) Reducibility modulo isomorphisms Problems

(later) Problem 2: testing

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms stem Candidates/~, Reduction/ ~

(Simple) Reducibility modulo |somorph|sms Problems

(later) Problem 2: testing

Problem 2.a: Lack of neutrality Problem 2.b: Knowing all the u;

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms stem Candidates/~, Reduction/ ~

(Simple) Reducibility modulo |somorph|sms Problems

(later) Problem 2: testing
Problem 2.a: Lack of neutrality Problem 2.b: Knowing all the u;
Testing
= =..=
/ t \ S
131 to i3 51 52

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms stem Candidates/~, Reduction/ ~

(Simple) Reducibility modulo |somorph|sms Problems

(later) Problem 2: testing
Problem 2.a: Lack of neutrality Problem 2.b: Knowing all the u;
Testing
= =2.=
/ t \ s T
tq to t3 S1 S92 1 /IQ '3\‘ T4

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~

(Simple) Reducibility modulo |somorph|sms Problems

(later) Problem 2: testing
Problem 2.a: Lack of neutrality Problem 2.b: Knowing all the u;
Testing
= =..=
/ 4 \ s T
131 to i3 51 52 1 /fz H\‘ T4
STLC STLC/.
(Az.t)s (Az.t) s

(Azt')s tls/z] (Ax.t)s’ (Az.t')s% \

Un

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC Parigot System F

(Simple) Reducibility modulo isomorphisms Solution 2.a

Solving lack of neutrality

@ Neutrality is used to test one eliminator at a time

@ Constructors commutation breaks neutrality

@ “Local” testing does not work

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC Parigot System F

(Simple) Reducibility modulo isomorphisms Solution 2.a

Solving lack of neutrality

@ Neutrality is used to test one eliminator at a time

@ Constructors commutation breaks neutrality

@ “Local” testing does not work

Fetching all at once

[Ai » ... = A, — 7]

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC Parigot System F Ca es, Reduction

(Simple) Reducibility modulo isomorphisms Solution 2.a

Solving lack of neutrality

@ Neutrality is used to test one eliminator at a time
@ Constructors commutation breaks neutrality

@ “Local” testing does not work

all at once
| Testing |

[Ai » ... = A, — 7]

Testing all possible eliminators @ = (uy, ..., u,) from [A1] x ... x [4,]

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC Parigot System Cand es, Reduction

(Simple) Reducibility modulo isomorphisms Solution 2.a

Solving lack of neutrality

@ Neutrality is used to test one eliminator at a time
@ Constructors commutation breaks neutrality

@ “Local” testing does not work

all at once
| Testing |

[Ai » ... = A, — 7]

Testing all possible eliminators @ = (uy, ..., u,) from [A1] x ... x [4,]

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC Parigot System Cand es, Reduction

(Simple) Reducibility modulo isomorphisms Solution 2.a

Solving lack of neutrality

@ Neutrality is used to test one eliminator at a time
@ Constructors commutation breaks neutrality

@ “Local” testing does not work

all at once
| Testing |

[Ai » ... = A, — 7]

Testing all possible eliminators @ = (u1,...,u,) from [A;] X ... x [A,]
(A\x.t)si
w.t')sﬁ4 (Aeb)s'd (Az.t)sid

m the proof obligation is now SN instead of RED

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms System F/~, Ca

System F (polymorphic)\—calculus) modulo |somorph|sms

Equivalence on types

VX.(AxB) ~ (VX.A)x (VX.B)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms . Parigot System F/~, Candidates,

System F (polymorphic \—calculus) modulo isomorphisms

Equivalence on types

VX.(AxB) ~ (VX.A)x (VX.B)

Typing rules

FEt: A A~B
I'-t:B

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms . Parigot System F/~, Candidates,

System F (polymorphic \—calculus) modulo isomorphisms

Equivalence on types

VX.(AxB) ~ (VX.A)x (VX.B)

Typing rules
'Ft: A A~B

'Ft: B
Equivalence on terms
AX.(t,s) S (AX.t,AX.s)
t,s)A S (tA, sA)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms . Parigot System F/~, Candidates,

System F (polymorphic \—calculus) modulo isomorphisms

Equivalence on types

VX.(AxB) ~ (VX.A)x (VX.B)

Typing rules

FEt: A A~B
I'-t:B

Equivalence on terms

,8) 5 (AX.t,AX.s)
s (tA, sA)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~, Parigot System F Candidates/~, Reduction/ -

Reducibility for System F/_ Problem 2.a again

we agreed on testing “globally”

(AX.t)Bii
(AX.)Bi t[B/X]i (AX.t)Bu'

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC arigot System Candidates/~, Reduction/ -

Reducibility for System F/_ Problem 2.a again
we agreed on testing “globally”
(AX.t)Bii
(AX.)Bi t[B/X]i (AX.t)Bu'
But...

which are the possible @ of [X],?

e [X], = p(X) is any candidate
e we only know CR1, CR2 and CR3

@ we don't have enough information to range over @

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~, Parigot System F Candidates/~, Reduction/ -

Alternative RED for System F: Parigot candidates

Giving structure to candidates

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~, Parigot System F Candidates/~, Reduction/ -

Alternative RED for System F: Parigot candidates

Giving structure to candidates

Family of sets of candidates [ljls[feaiV=\%

UeRygy VERB
SNAERY USV € Rasn

X CRa (Us € RaiB)x])Bek
NX €Ra VB.Up € Ryx.a

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~, Parigot System F Candidates/~, Reduction/ -

Alternative RED for System F: Parigot candidates

Giving structure to candidates

Family of sets of candidates HilsasiV\%! Example

UeRygy VERB SNAH€'RA71 SN)(ERX
SNAERY UV eRan SNAn%SNX €R4,x

X CR, (Us € Raip/x))Bek SN 4, € Ra, :
ﬂXGRA QB.UBGRVXA S./\/A1*> %S./\/A %SNXGRAIA = A =X

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~, Parigot System F Candidates/~, Reduction/ -

Alternative RED for System F: Parigot candidates

Giving structure to candidates

Family of sets of candidates HilsasiV\%! Example

UeRygy VERB SNAH€'RA71 SN)(ERX
SNAERY UV eRan SNAn%SNX €R4,x

X CR, (Us € Raip/x))Bek SN 4, € Ra, :
ﬂXGRA QB.UBGRVXA S./\/A1*> %S./\/A %SNXGRAIA = A =X

@ the eliminators 4

SN £ —

@ the RED—set
[Al, € Ra [B], € Rs

[[A — Bﬂp = [[A]]p%[[B]]p € Rasb

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC/~, Parigot System F Candidates/~, Reduction/ -

Alternative RED for System F: Parigot candidates

Giving structure to candidates

Family of sets of candidates HilsasiV\%! Example

UeRygy VERB SNAH€'RA71 SN)(ERX
SNAERY UV eRan SNAn%SNX €R4,x

X CR, (Us € Raip/x))Bek SN 4, € Ra, :
ﬂXGRA QB.UBGRVXA S./\/A1*> %S./\/A %SNXGRAIA = A =X

@ the eliminators 4

SN £ —

@ the RED—set
[Al, € Ra [B], € Rs

[[A — Bﬂp = [[A]]p%[[B]]p € Rasb

[SN4=SNB € Rassly = (Wuesaa

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms SilE arigot System Candidates/~, Reduction

Reducibility for System F/_ Problem 2.a solved

(AX.t)Bil
(AX.t")Bi t[B/X]a (AX.t)Bu'

which are the possible @ of [X],?

o [X], = p(X) is any candidate

o we only know FiM@&R have structure for p

° Wederr"t’m have enough information

'} range over the eliminators @ in p(X)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms _ Parigot System F Candidates/~, Reduction

RED for System F/. Fetching/..

Problem 1

Against which terms should (Az?.t, \z4.s) be tested?

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms m F Candidates/ ~,

RED for System F/.

Problem 1
Against which terms should (Az?.t, \z4.s) be tested?

But modulo isomorphisms Azt Axh.s)

@ types are part of an equivalence class pd AN
@ restrictions comes from all the class (A=-B)x(A—=C) A—(BxC)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms m F Candidates/

RED for System F/.

Problem 1

Against which terms should (Az?.t, \z4.s) be tested?

But modulo isomorphisms Azt Axh.s)

@ types are part of an equivalence class pd AN
@ restrictions comes from all the class (A=-B)x(A—=C) A—(BxC)
Recall that

o [-]. follows types fetching restrictions
@ by induction m(A)

e m(A) is a stable measure on types

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms >3) Candidates/ ~,

RED for System F/. Fetching/..

Problem 1

Against which terms should (Az?.t, \z4.s) be tested?

But modulo isomorphisms Azt Axh.s)

@ types are part of an equivalence class pd AN

@ restrictions comes from all the class (A=-B)x(A—=C) A—(BxC)
Recall that
ﬂAl ><A2~A{ [[Al]]p;([[A2]]p }
nAlaAgwAi[[Al]]P;[[Aﬂ]P}
Mvx.armal VB-O{[A]p1cs/x1 }}

@ []. follows types fetching restrictions [Al,
@ by induction m(A)

D D

e m(A) is a stable measure on types

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms) m F Candidates/ ~, ctio

RED for System F/. Parigot candidates/..

Changes in the family R, due to isomorphisms

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms SilE arigot System Candidates/ ~

RED for System F/_ Parigot candidates/..

Changes in the family R, due to isomorphisms

Family of sets of candidates Jlile[llad\VZI\¥!
A— (Bx(C) (A= B)x (A—0C)

FeRp, GeRp A=B
FNGeRy

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms v E n Candid ~ Reduction/ ~

RED for System F/. Testing/ -
Problem 2.b

What are the one—step reducts of a term?

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms v stem Ca ~ Reduction/ ~

RED for System F/. Testing/ -
Problem 2.b

What are the one—step reducts of a term?
(Ax.t)s

()\x.t')sm)s’ \j\\\)u

n

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms m Cz Reduction/ ~

RED for System F/. Testing/ -
Problem 2.b

What are the one—step reducts of a term?
(Ax.t)s

(Ax.t')s%s’ \j\\u
[Solution]

@ characterize classes of terms

n

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms m Can Reduction/ ~

RED for System F/ . Testing/ .
Problem 2.b

What are the one—step reducts of a term?
(Ax.t)s

(Ax.t')s%s’ \j\\u
[Solution]

@ characterize classes of terms
@ look at the one—step redex of each shape

n

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms STLC 3 g m Candidates Reduction/ ~

RED for System F/. Testing/ -
Problem 2.b

What are the one—step reducts of a term?
(Ax.t)s

//\

(Ax.t')s t[s/x] (Az.t)s U,

@ characterize classes of terms
@ look at the one—step redex of each shape

Lemma 3.2 (The class of type abstractions). IfAX.t" 2" s,
then s is equal to: AXA
1. AX.s" witht 2™ s andm <n >
2. Axts witht! 2™ AxAr, s’ 2™ AX.r,mi+1+m; < Ot Al Mo A X
n,and X ¢ FV(A)
3. (s1.8p) with t' 2™ (ry,ry), s| @™ AX.r;, and my +
1+my +my, <n

4. myx as’ witht' 2™ mur, s’ 2™ AX.r,andm; +1+ .
< n AX (w1, 142) T (AX.uy, AX o
2 =

mOTH may e, THx2 1

(AXA.uh, AX. Do)

Cristian Sottile Reducibility candidates modulo isomorphisms

Reducibility modulo isomorphisms » Parigot System F Candidates/~, Reduction/ ~

Conclusions

@ We need to prove SN in a System F modulo isomorphisms
@ The calculus has no neutrality
@ Parigot's approach to reducibility does not use neutrality

@ We are adapting Parigot’s technique to modulo isomorphisms by
@ relating candidates of isomorphic types
@ fetching restrictions from all the equivalents
@ characterizing the one—step reducts of all term—classes

Cristian Sottile

Reducibility candidates modulo isomorphisms

	Termination
	Reducibility
	STLC
	System F
	Candidates by Girard

	Reducibility modulo isomorphisms
	STLC/
	Parigot
	System F/
	Candidates/
	Reduction/

