# Strong normalization through idempotent intersection types: a new syntactical approach

#### Pablo Barenbaum

CONICET
Universidad Nacional de Quilmes
Universidad de Buenos Aires

#### Simona Ronchi Della Rocca

Università di Torino

#### Cristian Sottile

CONICET

Universidad de Buenos Aires Universidad Nacional de Quilmes

Proofs & Algorithms Seminar École Polytechnique, Paris

June 30, 2025









To find simpler proofs of strong normalization for idempotent intersection types

To find simpler proofs of strong normalization for idempotent intersection types

**Strong normalization proof techniques** 

To find simpler proofs of strong normalization for idempotent intersection types

Strong normalization proof techniques

Semantic approach: reducibility candidates/logical relations [Tait'67, Girard'72]

- ▶ Define a **denotational semantic** for types based on **termination**
- Prove soundness of typed terms w.r.t. the semantics

#### To find simpler proofs of strong normalization for idempotent intersection types

#### Strong normalization proof techniques

Semantic approach: reducibility candidates/logical relations [Tait'67, Girard'72]

- Define a denotational semantic for types based on termination
- Prove soundness of typed terms w.r.t. the semantics

Syntactic approach: decreasing measures [Gandy'80, de Vrijer'87]

- Define a mapping from terms to a well founded order
- Such that it decreases along reduction
- ► TLCA Problem#26 (for STLC, posed by Gödel)

#### **Results**

1. A decreasing measure based on enriching the calculus with memories

#### Definition

A mapping

$$\#:\Lambda o \mathit{WFO}$$

# satisfying $M ightarrow_{eta} N$

$$\Longrightarrow \\ \#(M) > \#(N)$$

#### Corollary

$$\exists \qquad M_1 \qquad \rightarrow_{\beta} \qquad M_2 \qquad \rightarrow_{\beta} \quad \cdots$$

$$\#(M_1) > \#(M_2) > \cdots$$

#### Results

1. A decreasing measure based on enriching the calculus with memories

#### Definition Corollary satisfying A mapping $M \to_{\beta} N$ $\#:\Lambda o WFO$ $\#(M_1) > \#(M_2) > \cdots$ #(M) > #(N)

- 2. An intrinsically typed (i.e. à la Church ) version of idempotent intersection types
  - usually presented à la Curry
  - both systems simulate each other

$$\begin{array}{ccc}
M & \longrightarrow & N \\
 & & & \square \\
t & \longrightarrow & s
\end{array}$$



## Idempotent Intersection Types ( $\Lambda_{\cap}^{Cu}$ )

[Coppo-Dezzani'79]

Key idea Allowing variables to have multiple types

$$\Gamma, x: A \vdash x: A$$
  $\leadsto$   $\Gamma, x: \{A_1, ..., A_n\} \vdash x: A_i$ 

## Idempotent Intersection Types ( $\Lambda_{\cap}^{Cu}$ )

[Coppo-Dezzani'79]

Key idea Allowing variables to have multiple types

$$\Gamma, x: A \vdash x: A$$
  $\leadsto$   $\Gamma, x: \{A_1, ..., A_n\} \vdash x: A_i$ 

#### **Grammar of types**

## Idempotent Intersection Types ( $\Lambda_{\cap}^{Cu}$ )

[Coppo-Dezzani'79]

**Key idea** Allowing variables to have multiple types

$$\Gamma, x: A \vdash x: A$$
  $\leadsto$   $\Gamma, x: \{A_1, ..., A_n\} \vdash x: A_i$ 

#### **Grammar of types**

#### Typing rules

$$\frac{B \in \vec{A}}{\Gamma, x : \vec{A} \vdash_{\mathbf{e}} x : B} \text{ e-var } \frac{\left(\Gamma \vdash_{\mathbf{e}} N : A_{i}\right)_{i \in I} \quad A_{i} \neq A_{j} \text{ if } i \neq j}{\Gamma \vdash_{\mathbf{e}} N : \{A_{1}, \dots, A_{n}\}} \text{ e-many}$$

$$\frac{\Gamma, x : \vec{A} \vdash_{\mathbf{e}} M : B}{\Gamma \vdash_{\mathbf{e}} \lambda x . M : \vec{A} \to B} \text{ e-I} \to \frac{\Gamma \vdash_{\mathbf{e}} M : \vec{A} \to B}{\Gamma \vdash_{\mathbf{e}} M N : B} \text{ e-E} \to 0$$

#### **E**xample

#### Typing rules

$$\frac{B \in \vec{A}}{\Gamma, x : \vec{A} \vdash_{\mathbf{e}} x : B} \text{ e-var}$$

$$\frac{(\Gamma \vdash_{\mathbf{e}} N : A_i)_{i \in I} \quad A_i \neq A_j \text{ if } i \neq j}{\Gamma \Vdash_{\mathbf{e}} N : \{A_1, \dots, A_n\}} \text{ e-many}$$

$$\frac{\Gamma, x : \vec{A} \vdash_{\mathbf{e}} M : B}{\Gamma \vdash_{\mathbf{e}} \lambda x.M : \vec{A} \to B} \text{ e-I} \to$$

$$\frac{\Gamma \vdash_{\mathbf{e}} M : \vec{A} \to B \quad \Gamma \vdash_{\mathbf{e}} N : \vec{A} \quad \vec{A} \neq \varnothing}{\Gamma \vdash_{\mathbf{e}} M N : B} \quad \mathbf{e}\text{-E} \to$$

#### Typing a self-application

$$\frac{x:\{A \rightarrow A,A\} \vdash_{\mathsf{Cu}} x:A \rightarrow A \quad x:\{A \rightarrow A,A\} \vdash_{\mathsf{Cu}} x:A}{\frac{x:\{A \rightarrow A,A\} \vdash_{\mathsf{Cu}} xx:A}{\vdash_{\mathsf{Cu}} \lambda x.xx:\{A \rightarrow A,A\} \rightarrow A}}$$

$$\frac{\vdash_{\mathsf{Cu}} \lambda x.x:A\to A \quad \vdash_{\mathsf{Cu}} \lambda x.x:A}{\Vdash_{\mathsf{Cu}} \lambda x.x:\{A\to A,A\}}$$

$$\vdash_{\mathsf{Cu}} (\lambda x.xx)(\lambda x.x) : A$$

Part I: an intrinsically typed idempotent

intersection system

## Idempotent Intersection Types: a Church presentation ( $\Lambda_{\bigcirc}^{Ch}$ )

#### Why?

- ► The measure technique is **based on redex degrees** (∴ on types of subterms)
- So. We need to handle derivations
- But: The technique requires syntactical "intermediate" derivations
- And: these are **not representable** in the presentation à la Curry

#### À la Curry

# Idempotent Intersection Types: a Church presentation ( $\Lambda_{\cap}^{\mathsf{Ch}}$ ) À la Curry

#### A linearization inspired by Kfoury's

$$\frac{(\Gamma \vdash_{\mathsf{Cu}} N : A_i)_{i \in 1..n} \dots}{\Gamma \Vdash_{\mathsf{Cu}} N : \{A_1, \dots, A_n\}} \implies \frac{(\Gamma \vdash_{\mathsf{Ch}} s_i : A_i)_{i \in 1..n} \quad A_i \neq A_j \text{ if } i \neq j}{\Gamma \Vdash_{\mathsf{Ch}} \{s_1, \dots, s_n\} : \{A_1, \dots, A_n\}}$$

# Idempotent Intersection Types: a Church presentation ( $\Lambda_{\cap}^{\mathsf{Ch}}$ ) À la Curry

$$\frac{x: \{A \to A, A\} \vdash_{\mathsf{Cu}} x: A \to A \quad x: \{A \to A, A\} \vdash_{\mathsf{Cu}} x: A}{x: \{A \to A, A\} \vdash_{\mathsf{Cu}} xx: A} \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.x: A \to A \qquad \vdash_{\mathsf{Cu}} \lambda x.x: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \vdash_{\mathsf{Cu}} \lambda x.x: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: \{A \to A, A\} \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad \qquad \vdash_{\mathsf{Cu}} \lambda x.xx: A} \\ \frac{-1}{\mathsf{Cu}} \lambda x.xx: A \to A \qquad$$

#### A linearization inspired by Kfoury's

$$\frac{(\Gamma \vdash_{\mathsf{Cu}} N : A_i)_{i \in 1..n} \dots}{\Gamma \Vdash_{\mathsf{Cu}} N : \{A_1, \dots, A_n\}} \implies \frac{(\Gamma \vdash_{\mathsf{Ch}} s_i : A_i)_{i \in 1..n} \quad A_i \neq A_j \text{ if } i \neq j}{\Gamma \Vdash_{\mathsf{Ch}} \{s_1, \dots, s_n\} : \{A_1, \dots, A_n\}}$$

#### À la Church

$$(\lambda x^{\{\{A\}\to A,A\}}.x^{\{A\}\to A}x^A) \left\{ \begin{array}{c} \lambda x^{\{A\}\to A}.x \\ \lambda x^{\{A\}\to A}.x \end{array}, \lambda x^A.x \right\}$$

## Idempotent Intersection Types: a Church presentation ( $\Lambda_{\cap}^{Ch}$ )

#### Substitution

#### à la Curry

$$(\lambda x. x x) (\lambda x.x)$$

$$\rightarrow_{\beta}$$

$$(\lambda x.x) (\lambda x.x)$$

#### à la Church

$$(\lambda x^{\{A \to A, A\}}. \frac{x^{A \to A}}{x^{A \to A}}, \frac{x^{A}}{x^{A}}) \{ \frac{\lambda x^{A \to A}.x}{\lambda x^{A \to A}.x}, \frac{\lambda x^{A}.x}{\lambda x^{A}.x}$$

$$(\lambda x^{A \to A, A}). (\lambda x^{A}.x)$$

## Idempotent Intersection Types: a Church presentation ( $\Lambda_{\cap}^{Ch}$ )

#### Substitution

#### à la Curry

$$(\lambda x. x. x) (\lambda x. x)$$

$$\rightarrow \beta$$

$$(\lambda x. x) (\lambda x. x)$$

$$(\lambda x.t)s \to_{\beta} t [s/x]$$

#### à la Church

$$(\lambda x^{\{A \to A, A\}}, \frac{x^{A \to A}}{x^{A \to A}}, \frac{x^{A}}{x^{A}}) \{ \frac{\lambda x^{A \to A}.x}{\lambda x^{A \to A}.x}, \frac{\lambda x^{A}.x}{\lambda x^{A}.x} \}$$

$$\xrightarrow{\bullet \text{Ch}} (\lambda x^{A \to A}.x) (\lambda x^{A}.x)$$

$$(\lambda x^{\vec{A}}.t)\vec{s} \to_{\mathsf{Ch}} t[\begin{array}{c} s_1/x^{A_1} \\ \end{array}, \ldots, \begin{array}{c} s_n/x^{A_n} \end{array}]$$

## Idempotent Intersection Types: a Church presentation ( $\Lambda_{\cap}^{Ch}$ )

#### Substitution

#### à la Curry

$$(\lambda x. x. x) (\lambda x. x)$$

$$\rightarrow_{\beta}$$

$$(\lambda x. x) (\lambda x. x)$$

$$(\lambda x.t)s \to_{\beta} t [s/x]$$

#### à la Church

$$(\lambda x^{\{A \to A, A\}}, x^{A \to A}, x^{A}) \{ \lambda x^{A \to A}, x, \lambda x^{A}, x \}$$

$$\to_{\mathsf{Ch}}$$

$$(\lambda x^{A \to A}, x) (\lambda x^{A}, x)$$

$$(\lambda x^{\vec{A}}.t)\vec{s} \rightarrow_{\mathsf{Ch}} t[s_1/x^{A_1}, \dots, s_n/x^{A_n}]$$

#### Bijection between a set-term and its set-type

- $\Rightarrow$ ) given  $s' \in \vec{s}$ , it has type some type A' by i-many, which is **unique** (à la Church typing)
- $\Leftarrow$ ) given  $A' \in \vec{A}$ , by injectivity  $(A_i \neq A_j \text{ if } i \neq j)$  there is only one derivation  $\Gamma \vdash_{\mathsf{Ch}} s' : A'$

## Relating $\Lambda_{\bigcirc}^{Cu}$ and $\Lambda_{\bigcirc}^{Ch}$

**Reduction difference** Inside the argument of an application

$$t \hspace{0.1cm} \{s_1, s_2, \ldots, s_n\} \hspace{0.3cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1} \hspace{0.1cm}, s_2, \ldots, s_n\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2} \hspace{0.1cm}, \ldots, s_n\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} \ldots \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{\mathsf{Ch}} t \{ \hspace{0.1cm} \underline{s'_1}, \underline{s'_2}, \ldots, \underline{s'_n}\} \hspace{0.1cm} \rightarrow_{$$

## Relating $\Lambda_{\bigcirc}^{Cu}$ and $\Lambda_{\bigcirc}^{Ch}$

**Reduction difference** Inside the argument of an application

$$t \{s_1, s_2, \dots, s_n\} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2, \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, \mathbf{s_2'}, \dots, s_n \} \longrightarrow_{\mathsf{Ch}} \dots \longrightarrow_{\mathsf{Ch}} \end{array} \\ t \{s_1, s_2, \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} \end{array} \\ t \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ t \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ t \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ t \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ t \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ t \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ t \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ t \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \end{array} \\ \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \} \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \} \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \} \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \end{array} \\ \} \{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2', \dots, s_n \} \longrightarrow_{\mathsf{Ch}} t\{ \begin{array}{c} \mathbf{s_1'}, s_2$$

$$\rightarrow_{\mathsf{Ch}} t\{ s_1'$$

$$t\{s_1'$$

$$\{s_1, s_2, \dots, s_n\} \rightarrow_{\mathsf{Ch}} t$$

$$t\{s_1', s_2', s_2'\}$$

$$\{s_1,\ldots,s_n\} \to_{\mathsf{Ch}} s_n$$

$$t \left\{ s_1', s_2', \dots, s_n' \right\}$$

#### Relating terms and derivations

Uniformity set-term with "equal" subterms

Refinement relate uniform set-terms and terms

$$x^{D} \left\{ \begin{array}{c} I^{A}I^{B} \;,\; I^{B}I^{C} \end{array} \right\}$$
 
$$x^{D} \left\{ \begin{array}{c} I^{A}I^{B} \;,\; I^{C} \end{array} \right\} \qquad x^{D} \left\{ \begin{array}{c} I^{B} \;,\; I^{B}I^{C} \end{array} \right\}$$





$$\frac{x^D \sqsubset x \qquad (I^A I^B)^{\mathbf{e}} = (I^C I^D)^{\mathbf{e}} = II}{x(II)}$$

## Relating $\Lambda_{\bigcirc}^{Cu}$ and $\Lambda_{\bigcirc}^{Ch}$

Relating terms and derivations

Uniformity set-term with "equal" subterms

Refinement relate uniform set-terms and terms



#### Correspondence

#### **Simulation**



# Part II: a decreasing measure for $\Lambda_{\cap}^{\mathsf{Ch}}$

#### **Definition**

degree of the type of its abstraction



 $deg(A \rightarrow B)$ 

#### **Definition**

degree of the type of its abstraction



 $\rightarrow_{\beta}$ 

#### **Turing's observation**

a redex contraction can only create smaller degree redexes



 $\deg(R \text{ new}) < \deg(A \to B)$ 

#### **Definition**

degree of the type of its abstraction



 $deg(A \rightarrow B)$ 

Redex creation [Lévy, 1978]

identity applied to a  $\lambda$  $\lambda$  body is a  $\lambda$ 

#### **Turing's observation**

a redex contraction can only create smaller degree redexes



 $deg(R \text{ new}) < deg(A \rightarrow B)$ 

#### Definition

degree of the type of its abstraction



 $deg(A \rightarrow B)$ 

Redex creation [Lévy, 1978]

**Turing's observation** 

a redex contraction can only create smaller degree redexes



 $deg(R \text{ new}) < deg(A \rightarrow B)$ 

$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t \vec{t} \mid t \langle \vec{t} \rangle \qquad (\lambda x^{\vec{A}}.t) \vec{s} \to_m t [\vec{s}/x^{\vec{A}}] \langle \vec{s} \rangle$$

$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t \vec{t} \mid t \langle \vec{t} \rangle \qquad (\lambda x^{\vec{A}}.t) \vec{s} \to_m t [\vec{s}/x^{\vec{A}}] \langle \vec{s} \rangle$$

#### Why not to erase?

► Retain information



$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t \vec{t} \mid t \langle \vec{t} \rangle \qquad (\lambda x^{\vec{A}}.t) \vec{s} \to_m t [\vec{s}/x^{\vec{A}}] \langle \vec{s} \rangle$$

#### Why not to erase?

► Retain information





## The memory $\Lambda_{\cap}^{Ch}$

$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t \vec{t} \mid t \langle \vec{t} \rangle \qquad (\lambda x^{\vec{A}}.t) \vec{s} \to_m t [\vec{s}/x^{\vec{A}}] \langle \vec{s} \rangle$$

#### Why not to erase?

Retain information

#### Example Let $A = \{a\} \rightarrow a$ , $B = \{A\} \rightarrow A$ and $C = \{B\} \rightarrow B$ :





$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t\vec{t} \mid t\langle \vec{t} \rangle \qquad (\lambda x^{\vec{A}}.t)\vec{s} \to_m t[\vec{s}/x^{\vec{A}}] \langle \vec{s} \rangle$$

#### Why not to erase?

► Retain information



#### Example

Let 
$$A = \{a\} \rightarrow a$$
,  $B = \{A\} \rightarrow A$  and  $C = \{B\} \rightarrow B$ :

$$(\lambda x^{\{B,A\}}.x^Bx^A)\{I^CI^B,I^BI^A\}$$

## The memory $\Lambda_{\cap}^{\mathbf{Ch}}$

$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t \vec{t} \mid t \langle \vec{t} \rangle \qquad (\lambda x^{\vec{A}}.t) \vec{s} \to_m t [\vec{s}/x^{\vec{A}}] \langle \vec{s} \rangle$$

#### Why not to erase?

► Retain information



#### Example

Let 
$$A = \{a\} \rightarrow a$$
,  $B = \{A\} \rightarrow A$  and  $C = \{B\} \rightarrow B$ :

$$(\lambda x^{\{B,A\}}.x^Bx^A)\{I^CI^B,I^BI^A\}$$

$$\rightarrow_m \qquad (\lambda x^{\{B,A\}}.x^Bx^A)\{I^B\langle I^B\rangle,\ I^BI^A\ \}$$

WCR

## The memory $\Lambda_{\cap}^{\mathbf{Ch}}$

$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t \vec{t} \mid t \langle \vec{t} \rangle \qquad (\lambda x^{\vec{A}}.t) \vec{s} \to_m t [\vec{s}/x^{\vec{A}}] \langle \vec{s} \rangle$$

#### Why not to erase?

► Retain information



#### **Example**

 $\rightarrow_m$ 

Let 
$$A = \{a\} \rightarrow a$$
,  $B = \{A\} \rightarrow A$  and  $C = \{B\} \rightarrow B$ :

$$(\lambda x^{\{B,A\}}.x^Bx^A)\{|I^CI^B|,I^BI^A\}$$

$$(\lambda x^{\{B,A\}}.x^Bx^A)\{I^B\langle I^B\rangle, I^BI^A\}$$

$$(\lambda x^{\{B,A\}}.x^Bx^A)\{I^B\langle I^B\rangle,I^A\langle I^A\rangle\}$$

$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t \vec{t} \mid t \langle \vec{t} \rangle \qquad (\lambda x^{\vec{A}}.t) \vec{s} \to_m t [\vec{s}/x^{\vec{A}}] \langle \vec{s} \rangle$$

#### Why not to erase?

► Retain information



#### Example

Let 
$$A = \{a\} \rightarrow a$$
,  $B = \{A\} \rightarrow A$  and  $C = \{B\} \rightarrow B$ :

$$(\lambda x^{\{B,A\}}.x^Bx^A)\{I^CI^B, I^BI^A\}$$

$$\to_m \qquad (\lambda x^{\{B,A\}}.x^Bx^A)\{I^B\langle I^B\rangle, I^BI^A\}$$

$$\to_m \qquad (\lambda x^{\{B,A\}}.x^Bx^A)\{I^B\langle I^B\rangle, I^A\langle I^A\rangle\}$$

$$\to_m \qquad (I^B\langle I^B\rangle)(I^A\langle I\rangle^A) \langle \{I^B\langle I^B\rangle, I^A\langle I^A\rangle\}\rangle$$



## The memory $\Lambda_{\cap}^{\mathbf{Ch}}$

$$t ::= x^{\vec{A}} \mid \lambda x.t \mid t \vec{t} \mid \frac{t \langle \vec{t} \rangle}{} \qquad (\lambda x^{\vec{A}}.t) \vec{s} \rightarrow_m t [\vec{s}/x^{\vec{A}}] \vec{\langle \vec{s} \rangle}$$

#### Why not to erase?

► Retain information



#### Example

Let 
$$A = \{a\} \rightarrow a$$
,  $B = \{A\} \rightarrow A$  and  $C = \{B\} \rightarrow B$ :

$$(\lambda x^{\{B,A\}}.x^Bx^A)\{I^CI^B, I^BI^A\}$$

$$\to_m \qquad (\lambda x^{\{B,A\}}.x^Bx^A)\{I^B\langle I^B\rangle, I^BI^A\}$$

$$\to_m \qquad (\lambda x^{\{B,A\}}.x^Bx^A)\{I^B\langle I^B\rangle, I^A\langle I^A\rangle\}$$

$$\to_m \qquad (I^B\langle I^B\rangle)(I^A\langle I\rangle^A)\langle \{I^B\langle I^B\rangle, I^A\langle I^A\rangle\}\rangle$$

$$\to_m \qquad I^A\langle I^A\rangle\langle I^A\langle I\rangle^A\rangle\langle \{I^B\langle I^B\rangle, I^A\langle I^A\rangle\}\rangle$$



## $\mathcal{W}_{\cap}$ -measure: definition

#### **Operations**

weight of a term:

$$w(t) = amount of memories$$

e.g. 
$$I\underline{\langle I \rangle} \langle I\underline{\langle I \rangle} \rangle \ \langle \{I^2\underline{\langle I^2 \rangle}, I\underline{\langle I \rangle}\} \rangle = 6$$

### **Operations**

weight of a term:

$$\overline{\mathbf{w}(t)} = \overline{\mathbf{a}}$$
mount of memories

e.g. 
$$I\underline{\langle I \rangle} \langle I\underline{\langle I \rangle} \rangle \ \langle \{I^2\underline{\langle I^2 \rangle}, I\underline{\langle I \rangle}\} \rangle = 6$$

 $\triangleright$  simplification of a term for degree d:

$$\overline{\mathsf{S}_d(t)} =$$
 "bottom-up" "contraction" of all  $d$  redexes

(def. by structural recursion)

$$\mathsf{S}_d((\lambda x^{\vec{A}}.t')\mathsf{L}) \ = \ \left| \mathsf{S}_d(t') \left[ \left. \mathsf{S}_d(\vec{s}) \middle/ x^{\vec{A}} \right] \middle\langle \left. \mathsf{S}_d(\vec{s}) \middle. \middle\rangle \right. \mathsf{S}_d(\mathsf{L}) \right| \right.$$

if redex of degree d

### **Operations**

weight of a term:

$$\overline{\mathbf{w}(t)} = \overline{\mathbf{a}}$$
mount of memories

e.g. 
$$I\underline{\langle I \rangle} \langle I\underline{\langle I \rangle} \rangle \ \langle \{I^2\underline{\langle I^2 \rangle}, I\underline{\langle I \rangle}\} \rangle = 6$$

 $\triangleright$  simplification of a term for degree d:

$$\overline{\mathsf{S}_d(t)} = \text{"bottom-up" "contraction" of all } d \text{ redexes}$$

(def. by structural recursion)

$$\mathsf{S}_d((\lambda x^{\vec{A}}.t')\mathsf{L}) \ = \ \left| \mathsf{S}_d(t') \left[ \left. \mathsf{S}_d(\vec{s}) \middle/ x^{\vec{A}} \right] \middle\langle \left. \mathsf{S}_d(\vec{s}) \middle. \middle\rangle \right. \mathsf{S}_d(\mathsf{L}) \right| \right.$$

if redex of degree d

► full simplification

$$S_*(t) = S_1(\dots S_{\mathsf{maxdeg}}(t)\dots)$$

### **Operations**

weight of a term:

$$\overline{\mathbf{w}(t)} = \overline{\mathbf{a}}$$
mount of memories

e.g. 
$$I\underline{\langle I \rangle} \langle I\underline{\langle I \rangle} \rangle \ \langle \{I^2\underline{\langle I^2 \rangle}, I\underline{\langle I \rangle}\} \rangle = 6$$

 $\triangleright$  simplification of a term for degree d:

$$\overline{\mathsf{S}_d(t)} = \text{"bottom-up" "contraction" of all } d \text{ redexes}$$

(def. by structural recursion)

$$S_d((\lambda x^{\vec{A}}.t')L) = |S_d(t')| [S_d(\vec{s})/x^{\vec{A}}] \langle S_d(\vec{s}) \rangle S_d(L)$$

if redex of degree d

► full simplification

$$S_*(t) = S_1(\dots S_{\mathsf{maxdeg}}(t)\dots)$$

 $\mathcal{W}_{\cap}$ -measure

t

### **Operations**

weight of a term:

$$\overline{\mathbf{w}(t)} = \overline{\mathbf{a}}$$
mount of memories

e.g. 
$$I\underline{\langle I \rangle} \langle I\underline{\langle I \rangle} \rangle \ \langle \{I^2\underline{\langle I^2 \rangle}, I\underline{\langle I \rangle}\} \rangle = 6$$

 $\triangleright$  simplification of a term for degree d:

$$\overline{\mathsf{S}_d(t)} = \text{"bottom-up" "contraction" of all } d \text{ redexes}$$

(def. by structural recursion)

$$\mathsf{S}_d((\lambda x^{\vec{A}}.t')\mathsf{L}) \ = \ \left| \; \mathsf{S}_d(t') \; \left[ \; \mathsf{S}_d(\vec{s}) \; \middle/ x^{\vec{A}} \right] \middle\langle \; \mathsf{S}_d(\vec{s}) \; \middle\rangle \; \mathsf{S}_d(\mathsf{L}) \right|$$

if redex of degree d

► full simplification

$$S_*(t) = S_1(\dots S_{\mathsf{maxdeg}}(t)\dots)$$

#### $\mathcal{W}_{\cap}$ -measure

$$t S_*(t)$$

### **Operations**

weight of a term:

$$\overline{\mathbf{w}(t)} = \overline{\mathbf{a}}$$
mount of memories

e.g. 
$$I\underline{\langle I\rangle}\langle I\underline{\langle I\rangle}\rangle$$
  $\langle\{I^2\underline{\langle I^2\rangle},I\underline{\langle I\rangle}\}\rangle=6$ 

 $\triangleright$  simplification of a term for degree d:

$$\overline{\mathsf{S}_d(t)} = \text{"bottom-up" "contraction" of all } d \text{ redexes}$$

(def. by structural recursion)

$$\mathsf{S}_d((\lambda x^{\vec{A}}.t')\mathsf{L}) \ = \ \left| \; \mathsf{S}_d(t') \; \left[ \; \mathsf{S}_d(\vec{s}) \; \middle/ x^{\vec{A}} \right] \middle\langle \; \mathsf{S}_d(\vec{s}) \; \middle\rangle \; \mathsf{S}_d(\mathsf{L}) \right|$$

if redex of degree d

► full simplification

$$S_*(t) = S_1(\dots S_{\mathsf{maxdeg}}(t)\dots)$$

#### $\mathcal{W}_{\cap}$ -measure

$$t extstyle S_*(t) = t' \mathsf{L}_t$$

### **Operations**

weight of a term:

$$\overline{\mathbf{w}(t)} = \overline{\mathbf{a}}$$
mount of memories

e.g. 
$$I\underline{\langle I\rangle}\langle I\underline{\langle I\rangle}\rangle$$
  $\langle\{I^2\underline{\langle I^2\rangle},I\underline{\langle I\rangle}\}\rangle=6$ 

 $\triangleright$  simplification of a term for degree d:

$$\overline{\mathsf{S}_d(t)} = \text{"bottom-up" "contraction" of all } d \text{ redexes}$$

(def. by structural recursion)

$$\mathsf{S}_d((\lambda x^{\vec{A}}.t')\mathsf{L}) \ = \ \left| \; \mathsf{S}_d(t') \; \left[ \; \mathsf{S}_d(\vec{s}) \; \middle/ x^{\vec{A}} \right] \middle\langle \; \mathsf{S}_d(\vec{s}) \; \middle\rangle \; \mathsf{S}_d(\mathsf{L}) \right|$$

if redex of degree d

► full simplification

$$S_*(t) = S_1(\dots S_{\mathsf{maxdeg}}(t)\dots)$$

#### $\mathcal{W}_{\cap}$ -measure

$$t extstyle S_*(t) = t' L_t extstyle w(t' L_t)$$

#### **Operations**

weight of a term:

$$\overline{\mathbf{w}(t)} = \overline{\mathbf{a}}$$
mount of memories

e.g. 
$$I\underline{\langle I \rangle} \langle I\underline{\langle I \rangle} \rangle \ \langle \{I^2\underline{\langle I^2 \rangle}, I\underline{\langle I \rangle}\} \rangle = 6$$

 $\triangleright$  simplification of a term for degree d:

$$\overline{S_d(t)}$$
 = "bottom-up" "contraction" of all  $d$  redexes

(def. by structural recursion)

$$S_d((\lambda x^{\vec{A}}.t')L) = S_d(t') [S_d(\vec{s})/x^{\vec{A}}] \langle S_d(\vec{s}) \rangle S_d(L)$$

if redex of degree d

► full simplification

$$S_*(t) = S_1(\dots S_{\mathsf{maxdeg}}(t)\dots)$$

#### $\mathcal{W}_{\cap}$ -measure

$$t extstyle S_*(t) = t' \mathsf{L}_t extstyle \mathsf{w}(t' \mathsf{L}_t)$$

 $\mathcal{W}_{\cap}(t) = \mathsf{w}(\mathsf{S}_*(t))$ 

► Reduction arrives at simplification

$$t \to_m^* \mathsf{S}_*(t)$$

- ► Reduction arrives at simplification
- Simplification is normal form

$$t \to_m^* \mathsf{S}_*(t)$$

$$\mathsf{S}_*(t) = \mathtt{nf}(t)$$

► Reduction arrives at simplification

 $t \to_m^* \mathsf{S}_*(t)$  $\mathsf{S}_*(t) = \mathsf{nf}(t)$ 

Simplification is normal form

 $\mathsf{S}_*(t) = \mathsf{nf}(t)$ 

► Max-degree simplification decreases max-degree

$$D_{\max}(t) > D_{\max}(\mathsf{S}_{D_{\max}}(t))$$

#### **Properties**

Reduction arrives at simplification

 $t \to_m^* \mathsf{S}_*(t)$ 

► Simplification is normal form

 $S_*(t) = nf(t)$ 

► Max-degree simplification decreases max-degree

$$D_{\max}(t) > D_{\max}(\mathsf{S}_{D_{\max}}(t))$$

#### Theorem: $\mathcal{W}_{\cap}$ decreases along reduction

$$t \to_{\mathsf{Ch}} s \implies \mathcal{W}_{\cap}(t) > \mathcal{W}_{\cap}(s)$$

#### **Properties**

Reduction arrives at simplification

$$t \to_m^* \mathsf{S}_*(t)$$

Simplification is normal form

$$S_*(t) = nf(t)$$

► Max-degree simplification decreases max-degree

$$D_{\max}(t) > D_{\max}(\mathsf{S}_{D_{\max}}(t))$$

#### Theorem: $\mathcal{W}_{\cap}$ decreases along reduction

$$t \to_{\mathsf{Ch}} s \implies \mathcal{W}_{\cap}(t) > \mathcal{W}_{\cap}(s)$$

#### Intuitively





Normal form is obtained through S<sub>\*</sub> **not** relying on reduction

Part III: a decreasing measure for  $\Lambda_{\cap}^{\mathbf{Cu}}$ 

# Lifting the result

### $\mathcal{W}_{\circ}^{\mathbf{Cu}}$ -measure

- ▶ To define  $\mathcal{W}_{\cap}^{\mathsf{Ch}}$ , we take the **weight** of the **full simplification** of t
- lacktriangle To define  $\mathcal{W}^{\mathsf{Cu}}_{\cap}$ , we **decorate** M with types, and then we apply  $\mathcal{W}^{\mathsf{Ch}}_{\cap}$

$$\mathcal{W}^{\mathsf{Cu}}_\cap(M) = \mathsf{w}(\mathsf{S}_*(M^{\mathsf{Ch}}))$$

# Lifting the result

#### $\mathcal{W}_{\circ}^{Cu}$ -measure

- ightharpoonup To define  $\mathcal{W}_{\circ}^{\mathsf{Ch}}$ , we take the **weight** of the **full simplification** of t
- ightharpoonup To define  $\mathcal{W}^{\mathsf{Cu}}_{\circ}$ , we **decorate** M with types, and then we apply  $\mathcal{W}^{\mathsf{Ch}}_{\circ}$

$$\mathcal{W}^{\mathsf{Cu}}_\cap(M) = \mathsf{w}(\mathsf{S}_*(M^{\mathsf{Ch}}))$$

$$\mathcal{W}_{\cap}^{\mathsf{Cu}}$$
 decreases along reduction  $M \to N \implies \mathcal{W}_{\cap}^{\mathsf{Cu}}(M) > \mathcal{W}_{\cap}^{\mathsf{Cu}}(N)$ 



# Lifting the result

#### $\mathcal{W}_{\circ}^{Cu}$ -measure

- ightharpoonup To define  $\mathcal{W}^{Ch}_{\cap}$ , we take the **weight** of the **full simplification** of t
- ightharpoonup To define  $\mathcal{W}^{\mathsf{Cu}}_{\circ}$ , we **decorate** M with types, and then we apply  $\mathcal{W}^{\mathsf{Ch}}_{\circ}$

$$\mathcal{W}^{\mathsf{Cu}}_\cap(M) = \mathsf{w}(\mathsf{S}_*(M^{\mathsf{Ch}}))$$

$$\mathcal{W}_\cap^{\mathsf{Cu}} \text{ decreases along reduction } M \to N \implies \mathcal{W}_\cap^{\mathsf{Cu}}(M) > \mathcal{W}_\cap^{\mathsf{Cu}}(N)$$

 $\Lambda_{\cap}^{\mathsf{Cu}}$  is strongly normalizing  $\Gamma \vdash_{\mathsf{Cu}} M : A \implies M \in SN$ 

#### The converse



 $\Lambda_{\cap}^{\mathsf{Cu}}$  is complete for strong normalization  $M \in SN \implies \Gamma \vdash_{\mathsf{Cu}} M : A$ 

#### Proof

- ▶ By induction on the inductive definition of SN
- ► Using:
  - refinement
  - a head subject expansion lemma

# Related works

**Existing decreasing measures for idempotent intersection types** 

#### Related works

#### **Existing decreasing measures for idempotent intersection types**

# [Kfoury & Wells'95]

- **▶** Domain of DM: multiset of natural numbers
- ▶ **Methodology: indirect** , *i.e.* decreases for specific strategy
- ▶ Base calculus: à la Church, ad hoc

#### [Boudol'03]

- Domain of DM: pair of natural numbers
- Methodology: indirect, i.e. decreases for specific strategy
- ► Base calculus: à la Curry

#### Related works

Existing decreasing measures for idempotent intersection types

# [Kfoury & Wells'95]

- **▶** Domain of DM: multiset of natural numbers
- ▶ **Methodology: indirect**, *i.e.* decreases for specific strategy
- ▶ Base calculus: à la Church, ad hoc

#### [Boudol'03]

- Domain of DM: pair of natural numbers
- ▶ Methodology: indirect, i.e. decreases for specific strategy
- ► Base calculus: à la Curry

#### Our proposal

- ► Domain of DM: **natural number**
- ► **Methodology:** DM proving SN (direct)
- ▶ Base calculus: à la Church, proven in simulation with Curry

#### **Conclusion**

▶ We defined a Church version of idempotent intersection types

▶ We defined a decreasing measure for the Church version, and extend it to the Curry version

► The defined measure is simpler than the previous ones

We successfully extended the technique from STLC

#### **Future work**

- ▶ **Refinement** of the measure **to exactness**, *i.e.* such that  $\mathcal{W}_{\cap}(M)$  is the amount of reduction steps of the longest reduction chain
- Adaptation of the technique to the idempotent intersection type system characterizing head normalization
- Adaptation of the original technique to other complex systems
- ► Formalization in proof assistants
- Compare in depth the original technique to Gandy's and de Vrijer's

# **Conclusion**

